Сандимирова Елена Ивановна

СФЕРИЧЕСКИЕ МИНЕРАЛЬНЫЕ ОБРАЗОВАНИЯ ВУЛКАНИЧЕСКИХ ПОРОД КУРИЛЬСКИХ ОСТРОВОВ И КАМЧАТКИ

Специальность: 25.00.04 – петрология, вулканология

Автореферат

диссертации на соискание учёной степени кандидата геолого-минералогических наук

г. Петропавловск-Камчатский, 2008

2

Работа выполнена в Институте вулканологии и сейсмологии Дальневосточного отделения Российской Академии наук

Научный руководитель:

доктор геолого-минералогических наук Сергей Николаевич Рычагов (ИВиС ДВО РАН)

Официальные оппоненты:	
Ведущая организация:	
Защита состоится «»200_ г. в заседании диссертационного советаДальневосточном Геологическом Институте ДВО 690022, г. Владивосток, пр-кт 100 лет Владивостоку	РАН по адресу:
С диссертацией можно ознакомиться в научной би ДВО РАН	иблиотеке ДВГИ
Автореферат разослан «»200_	_ Г.
Ученый секретарь диссертационного совета кандидат геолого-минералогических наук	Б.И.Семеняк

3

Введение

Актуальность. Минеральные образования идеальной сферической формы размером менее 1-2 мм, сложенные самородными элементами, разнообразными силикатно-оксидными фазами и оксидными минералами встречаются в различных регионах Мира, в самых разных геологических обстановках и породах. Они интересны тем, что имеют необычную форму, специфическое внутреннее строение, аномальный химический состав и находятся в парагенетической связи с самородными металлами и интерметаллическими соединениями, что позволяет использовать их в качестве индикаторов процессов самородного минералообразования и окислительно-восстановительных условий генезиса пород.

Главная проблема — это их происхождение. Заключается она в том, что в большинстве случаев сферулы обнаруживают в продуктах обогащения осадочных пород вне связи с коренным источником или в протолочках магматических пород вне связи с вмещающей средой. Многообразие мест находок привело к появлению разных взглядов по этому вопросу. Сферулы рассматриваются как космические, техногенные или природные образования. Среди последних выделяют магматические и гидротермальные. Однако однозначных критериев для разделения сферул до сих пор не выработано. Особые споры вызывают сферулы, образование которых связывают с взрывными кольцевыми структурами. Одни относят их к продуктам импактного метаморфизма (Флоренский и др., 1968; Гуров, Кудинова, 1985 и др.), другие связывают их с земным вулканизмом (Горяинов, 1976; Взрывные..., 1985 и др.). При этом в областях с активной вулканической деятельностью сферулы остаются слабо изученными.

Нет ясности и в происхождении сферул, которые были установлены при изучении рудной минерализации в разрезах глубоких скважин, пробуренных в пределах современных гидротермальных систем Камчатки и Курильских островов. В геологическом строении этих систем принимают участие мощные толщи вулканических пород, которые вдоль ослабленных зон подвергаются интенсивным гидротермальным изменениям. Изучение минералов и минеральных ассоциаций на этих объектах позволяет разобраться в многообразии проявленных здесь эндогенных и экзогенных процессов, реконструировать условия минералообразования, оценить динамику изменения параметров минералообразующей среды и источники вещества. Рудные и силикатные сферулы несут ценную генетическую информацию, поэтому решение вопросов, связанных с их генезисом на этих объектах, имеет принципиальное значение для интерпретации геологических данных, которые используются, в том числе, и при построениях глубинных моделей современных гидротермальных систем.

Главной целью исследований является комплексное изучение сферул из вулканических пород Курильских островов и Камчатки для реконструкции условий их образования и определения их места в геологической структуре гидротермальных систем.

Основные задачи. 1) Выявление особенностей морфологии, химического и минерального состава сферических образований; 2) Установление характера распространения сферул в вулканических разрезах и их связей с литологическим типом вмещающих пород; 3) Анализ условий и механизмов их образования; 4) Сопоставление полученных результатов с данными других исследователей.

Фактическая основа работы. Работа выполнена в Институте вулканологии и сейсмологии Дальневосточного отделения Российской Академии наук в рамках научно-исследовательских работ по теме: "Эволюция современных гидротермально-магматических рудообразующих систем Курило-Камчатской островной дуги" (№ государственной регистрации 01.2.00 106353) при финансовой поддержке Российского фонда фундаментальных исследований (проекты 93-05-08240, 97-05-65006, 00-05-64175а и 06-05-64689а), Федеральной целевой программы "Социально-экономическое развитие Курильских островов Сахалинской области (1994-2005 годы)"; ряда хозяйственных договоров с другими организациями.

В основу работы положены результаты многолетних (с 1992 по 2007 год) полевых и камеральных исследований по изучению рудной минерализации в разрезах глубоких скважин, пробуренных в пределах современных гидротермальных систем Курильских островов и Южной Камчатки (рис. 1). Были использованы материалы наиболее детально изученных разрезов скважин ГП-3 (2500 м) и 4ГП (1270 м), пройденных на северо-восточных склонах хр. Вернадского, о. Парамушир (Курильские острова). Кроме того, были привлечены данные, полученные при камеральном изучении проб керна и шлама из разрезов скважин с других объектов: скважина РЭ-6 (1000 м), пробуренная в районе п. Паратунка (Южная Камчатка); скважины 64 (1000 м), 65 (1170 м) и 72 (450 м) – северо-западные склоны вулкана Баранского (о. Итуруп, Южные Курильские острова). Частично привлечены данные по скважине М-18 (1127 м), район Мутновского вулкана (Южная Камчатка). Всего было изучено более 300 проб керна и бурового шлама. Проведены минераграфические исследования более 400 образцов. Выделено и исследовано более 1000 зерен минералов и минеральных образований.

Методы исследований. Для решения поставленных задач использовался комплекс методов. На полевом этапе применялись методы геологического картирования — описание керна и бурового шлама, отбор проб, предварительное построение разрезов. На камеральном этапе проводились микроскопические и аналитические исследования. Для первичной диагностики и выделения минералов использовался бинокуляр, для изучения рудных минералов - микроскоп. Определение состава минералов и особенностей их морфологии проводилось с помощью современных аналитических методов: рентгеноспектрального, рентгено-фазового, рентгено-структурного и электронномикроскопического. Аналитические работы сопровождались фотодокументированием. Компьютерная обработка данных и расчет некоторых

параметров минералов проводились с использованием стандартных и специальных (Fastview, CRYSTAL-3.0) программ.

Личный вклад автора заключался в непосредственном участии во всех этапах исследований: сбор каменного материала в поле; макроскопическое описание керна и крупных обломков шлама; обработка и подготовка проб для исследований; отмывка шлихов для выделения рудных минералов; отбор и подготовка рудных минералов на различные виды анализов; непосредственно минераграфические исследования в отраженном свете; аналитическая работа на микрозонде в качестве оператора; реконструкция геологических разрезов скважин ГП-3, 4ГП и РЭ-6; составление отчетов; компьютерная обработка данных; фотодокументирование.

Основные результаты работы. Проведены комплексные исследования необычных минеральных образований сферической формы из вулканических пород Курильских островов и Южной Камчатки. Изучен состав и строение сферул, проведена их систематизация по морфологии и минеральному составу, охарактеризован комплекс сопутствующих минералов. Проведен сравнительный анализ составов силикатных сферул с аналогами других геологических обстановок. Проанализированы особенности распространения сферул в разрезах скважин и установлена их связь с литологическим типом пород. Показано, что максимальное скопление сферул приурочено к слоям пирокластических или вулканогенно-осадочных пород, что свидетельствует об их поступлении в эти отложения вместе с эксплозивным материалом. Рассмотрены вопросы генезиса сферул, вероятные механизмы и условия образования. Предполагается, что они имеют магматическое происхождение и являются рудными, рудно-силикатными или силикатными каплями застывшего расплава. Изучены сферулы в коренном залегании в метасоматически-измененных туфах и рассмотрены вопросы, связанные с их вторичным преобразованием. Показано, что под действием гидротермальных растворов они замещаются вторичными минералами, при этом реликтовые структуры роста сохраняются.

Научная новизна работы. Впервые для Курило-Камчатского региона столь детально и комплексно изучены струтурно-вещественные особенности сферул и рассмотрены вопросы, связанные с генезисом этих образований. В результате получены новые данные, которые позволяют рассматривать образование и распространение сферул в связи с эксплозивной деятельностью активных вулканов, что существенно расширяет имеющиеся на сегодняшний день представления о происхождении сферул. Изучен разрез вулканических отложений олигоцен-четвертичного возраста общей мощностью около 3600 м, который охватывает значительную часть истории развития Курило-Камчатской островной дуги. Это позволило выявить некоторые закономерности накопления сферул в течение достаточно длительного времени - более 2 млн. лет. Впервые рассматриваются вопросы, связанные с вторичными изменениями сферул в зонах метасоматоза.

Практическая значимость. Полученные данные имеют как научноприкладное, так и практическое значение. Они позволяют оценить термодинамические параметры флюидно-магматических систем Курило-Камчатской островной дуги в период ее формирования. Парагенезис сферул с самородными металлами дает возможность прогнозировать металлогеническую специализацию вмещающих вулканитов. Повышенные концентрации сферул в некоторых горизонтах вулканогенно-осадочных пород могут использоваться для корреляции разрезов и для стратиграфического расчленения немых толщ, что особенно актуально для областей активного вулканизма. Результаты работ изложены в статьях и научно-технических отчетах.

Защищаемые положения.

- 1. Сферулы представляют собой сложные поликомпонентные минеральные агрегаты, которые состоят в основном из самородного железа и его оксидов, а также стекла с высоким содержанием Ті, Fe и Мп. Они имеют характерные структуры роста и распада и находятся в парагенетической связи с самородными металлами, интерметаллическими соединениями и другими акцессорными минералами.
- 2. Сферулы приурочены к толщам вулканических отложений и концентрируются в некоторых слоях пирокластических и вулканогенноосадочных пород с высокой долей пирокластического материала. Их нахождение в обломках эффузивов и среди мелких обломков минералов свидетельствует о поступлении сферул в данные отложения за счёт эксплозивных процессов.
- 3. Ассоциация сферул с самородными металлами и минералами углерода свидетельствует об их формировании в условиях восстановительной среды. Сферулы образуются во флюидных (флюидно-магматических) системах в результате быстро протекающих газотранспортных реакций, которые способствуют расщеплению вещества на несмешивающиеся компоненты по типу ликвации и приводят к образованию рудных, рудно-силикатных или силикатных капель расплава.

Апробация работы. Основные результаты и положения, изложенные в диссертации, представлялись на российских и международных семинарах, сессиях, конференциях, съездах и симпозиумах, проходивших в г. Петропавловск-Камчатском (1998, 1999, 2002, 2005 гг.), г. Санкт-Петербурге (1999 г.), г. Екатеринбурге (2003 г.), г. Улан-Удэ (2006 г.), г. Иркутске (2007 г.). Работа обсуждалась на расширенном заседании лаборатории геотермии Института вулканологии и сейсмологии ДВО РАН.

Публикации. По теме диссертации опубликовано более 10 работ.

Елагодарностии. Автор благодарит руководителя диссертации — д.г.-м.н. С.Н.Рычагова за действенную помощь в работе и критические замечания. А также выражается признательность к.г.-м.н. В.Л.Леонову за консультации по вопросам геологии и тектоники о. Парамушира и Южной Камчатки; к.г.-м.н. Л.П.Вергасовой за помощь в проведении рентгеновских исследований в СПбГУ (г. Санкт-Петербург); к.г.-м.н. С.Ф.Главатских за помощь в проведении минералогических исследований в ИГЕМ РАН (г. Москва), к.г.-м.н. Е.Г.Сидорову за помощь и критические замечания при подготовке и написании диссертации, а также всем коллегам за поддержку и ценные советы. Неоценимую

помощь в проведении микрозондовых исследований оказали В.М.Чубаров, С.В.Москалева и Т.М.Философова (ИВиС ДВО РАН, г. Петропавловск-Камчатский). Особая благодарность выражается сотрудникам ОАО «Сахалинская гидрогеологическая экспедиция» и ГУП «Камчатскбургеотермия» за предоставление для исследований проб, геофизических и других данных по бурению скважин.

СОДЕРЖАНИЕ РАБОТЫ

Объем и структура работы. Диссертация состоит из введения, 6 глав, заключения, списка литературы из 155 наименований, включает 15 таблиц, 38 рисунков и занимает 135 машинописных страниц.

В первой главе освещается состояние проблемы. Во второй главе коротко характеризуется геологическое строение района исследований и объектов, на которых проводились работы. В третьей главе описаны методы исследований, дано детальное описание структурно-вещественных особенностей сферул, характеризуется комплекс сопутствующих минералов, а также приводятся результаты сравнения химического состава сферул с аналогами других геологических обстановок. В четвертой главе показаны особенности распространения сферул в разрезах скважин и их связь с литологическим типом пород. В пятой главе рассматриваются вопросы, связанные с генезисом сферул, вероятные механизмы и условия их образования. В шестой главе описываются вторичные изменения сферул при метасоматозе вулканических пород.

Глава 1. Состояние проблемы

Всплеск публикаций, касающихся сферул, приходится на вторую половину двадцатого века. Одна из обсуждаемых проблем – их происхождение. Сферулы рассматривают как космические (Флоренский и др., 1968, 1968а; Гуров, Кудинова, 1985; Григорьев, 1972; Фрондел, 1978 и др.), техногенные (Кузьмин и др., 1970; Гамянин и др., 2000 и др.) или природные образования. Большинство исследователей придерживается последней точки зрения, и считает, что они имеют земное эндогенное происхождение. Сферулы находят в магматических породах различного состава и генезиса (Мнацаканян, 1965; Рудашевский и др., 1987; Филимонова и др., 1989; Баженов и др., 1991 и др.), в гидротермальных рудах они также не редкость (Гамянин и др., 1999; Новгородова и др., 2003 и др.).

В эндогенных процессах сферулы имеют тесную связь с самородным минералообразованием. Это мало изученное направление в научных исследованиях. Особенно активно оно стало развиваться с начала 80-х годов прошлого столетия. Большой вклад по развитию знаний в этой области сделан Б.В.Олейниковым и его коллегами. Благодаря их усилиям были обобщены

данные по образованию самородных минералов в изверженных породах различного состава и различной формационной принадлежности, а также в постмагматических образованиях (Самородное..., 1981; Самородные..., ч. І-ІІІ, 1985). Значительный вклад по развитию научного направления сделала М.И.Новгородова, занимаясь изучением самородных металлов в рудах гидротермальных месторождений золота (Самородные..., 1983). Особое внимание самородным металлам (в том числе и сфероидам) уделяется в работах Л.Г.Филимоновой (1981, 1985, 1989). Исследуя закономерности развития вулканизма и рудообразования активизированных тихоокеанских окраин, она показывает, что появление самородных металлов в вулканитах определяется типом контролирующих их возникновение орогенных структур. Важнейшие аспекты эндогенного рудообразования и петрологии изверженных пород возможность переноса металлов в форме элементо-органических соединений, затрагиваются в работе Р.М.Слободского (Элементо-органические..., 1981). В этой связи нельзя не отметить работы Н.С.Никольского (Условия..., 1984 и др.), который подчеркивает, что образование самородных элементов и интерметаллических соединений зависит главным образом от окислительновосстановительных условий среды, определяемых флюидным режимом процессов минералообразования. Изучением самородных металлов, а также сферул и других минералов в образцах, поднятых при драгировании дна Тихого и Атлантического океанов, активно занимаются Л.Е.Штеренберг и др. (1979, 1981, 1994), В.А.Акимцев и др. (1991, 1992, 1996), В.Н.Шарапов и др. (2001) и другие. На сегодняшний день лучше всего изучен вещественный состав сферул из кимберлитов и взрывных кольцевых структур щитов и платформ (Татаринцев и др., 1983; Цымбал и др., 1985; Розова и др., 1984). В породах Курило-Камчатской островной дуги сферулы, сопутствующие им самородные металлы и интерметаллические соединения до настоящего времени остаются мало изученными. С разной степенью детальности они описаны в работах Ф.Ш.Кутыева и др. (1979, 1981, 1985), Е.Г.Сидорова (1987), Рудашевского и др. (1987), С.Ф.Главатских (1995), Г.А.Карпова и др. (1984, 2004), Я.Д.Муравьёва и др. (2002) и других.

Глава 2. Геологическое строение района исследований

Район исследований охватывает Курильские острова и юго-восточную часть Камчатки. Объекты, в пределах которых проводились исследования, расположены: на о. Итуруп - Океанское геотермальное месторождение, юго-западные склоны в-на Баранского; на о. Парамушир - Северо-Парамуширское геотермальное месторождение, восточные склоны хр. Вернадского, в-н Эбеко, в-н Крашенинникова; на юго-востоке Камчатского полуострова - Мутновское геотермальное месторождение, северо-восточные склоны в-на Мутновского и Паратунское геотермальное месторождение, долина р. Паратунки (рис. 1). В

научной литературе эти объекты рассматривают как современные гидротермальные системы островных дуг.

Геологическая и тектоническая история развития Курильских островов и юго-востока Камчатки отражена, в основном, в отложениях кайнозойского возраста (Желубовский, 1964; Сергеев, 1962, 1976; Горшков, 1967; Мархинин, Стратула, 1977; Стрельцов, 1987; Федорченко и др., 1989; Леонов, 1990; Авдейко и др., 2001; Апрелков и др., 2001 и др.). Они представлены самыми разнообразными продуктами вулканизма, так называемой непрерывной (от базальтов до риолитов) андезитовой формации. Породы в различной степени подвержены вторичным изменениям и прорываются немногочисленными магматическими телами. Данные по геолого-гидрогеологическому строению, химическому составу вод, вторичным изменениям пород гидротермальных систем приводятся в ряде работ (Гидротермальные..., 1976; Рычагов, 1993; Рычагов и др., 1997; Чудаев, 2003 и др.).

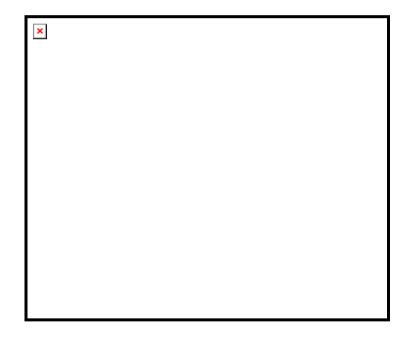


Рис. 1. Схема расположения объектов исследования.

1 - Океанское геотермальное месторождение (юго-западные склоны в-на Баранского); 2 - Северо-Парамуширское геотермальное месторождение (восточные склоны хр. Вернадского, в-н Эбеко, в-н Крашенинникова); 3 - Мутновское геотермальное месторождение (северо-восточные склоны в-на Мутновского); 4 - Паратунское геотермальное месторождение (долина р. Паратунка).

Глава 3. Структурно-вещественные особенности сферул и сопутствующих минералов

Методика исследований. Сферулы были выделены в основном из тяжелой фракции проб бурового шлама (большинство скважин пройдено роторным бурением без подъёма керна), редко они устанавливаются в шлифах и аншлифах из керна. Они также встречаются в шлиховых пробах аллювия некоторых рек. Первичная диагностика проводилась с помощью бинокуляра, для изучения морфологии и внутреннего строения использовались электронный и рудный микроскопы. Для изучения вещественного состава сферул применялись рентгено-фазовый, рентгено-структурный и рентгено-спектральный методы исследования.

Морфология сферул. Сферулы чаще всего имеют форму идеальных шаров, реже - это полусферы, каплевидные, эллипсовидные, гроздьевидные и другие округлые формы размером 0,1-1,7 мм (рис. 2). Некоторые имеют следы прикрепления к поверхности - приплюснуты бока в виде платформ; щеточки микрокристаллов у основания таких платформ; «корешки» у основания полусфер. Встречаются сферулы в срастании с корундом и плагиоклазом. Они в различной степени магнитны, часто полые внутри или содержат много газовых пустот круглой формы.

По внешним признакам можно выделить три основных типа сферул: 1 - чёрного цвета с гладкой или шероховатой поверхностью, металлическим блеском; 2 - чёрного цвета с гладкой поверхностью, стеклянным блеском; 3 - стально-серого цвета, шероховатой поверхностью, металлическим блеском. Как показано ниже, внешние различия связаны с преобладанием в составе сферул того или иного минерала или минеральной фазы, поэтому разделение на типы в определенной степени условно.

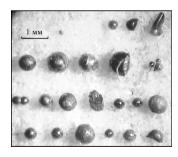


Рис. 2. Морфология сферул.

Минералогия и химический состав сферул. Сферулы первого типа обычно имеют магнетитовую или иоцитмагнетитовую (FeO-Fe $_3$ O $_4$) оболочку, внутри одно или несколько ядер (рис. 3д, 4в). Ядра состоят из чистого железа, иногда с примесью никеля до 1,9 мас. % и меди до 0,3 мас. %. Магнетит образует характерные полигонально-зернистые и скелетные структуры роста. Пространство между зернами магнетита обычно заполнено стеклом сложного состава (Si, Fe, Ti, Ca, Mn, Al, Mg, Na, K).

В некоторых сферулах можно наблюдать результаты диффузионного роста магнетитовой оболочки за счёт железного ядра - из-за разницы в размерах кристаллических решёток между ядром и оболочкой образуются поры и пустоты (рис. 4в). Внутри железных ядер

и сферул иногда отмечаются участки окисления круглой формы, в которых присутствуют примеси Si, Mn, Ca, Al, Na, K.

Сферулы второго типа сложены преимущественно стеклом и минеральными фазами переменного состава из группы сложных оксидов кремния, железа, титана, марганца и других элементов. С поверхности и внутри сферул часто наблюдаются газовые полости (рис. 3a). В сколах и искусственных шлифах они просвечивают и имеют насыщенный красновато-бурый или рыжевато-бурый цвет. Некоторые сферулы сложены однородным по составу стеклом, они рентгеноаморфны. Другие имеют более сложное строение. В них присутствуют железные ядра с примесью Ni и Cu, круглые включения магнетита (вероятно окисленное железо), наблюдаются скелетные и сноповидные структуры роста (рис. 4). Продукты раскристаллизации в сферулах со скелетной структурой представлены магнетитом, марганцевой ульвошпинелью и стеклом, а в сферулах со сноповидной структурой – минеральными фазами ряда ильменитпирофанит, шорломитом(?), армолколитом(?) и другими высокотитанистыми сложными оксидами. В некоторых сферулах можно наблюдать эвтектоидные структуры роста, образованные иоцитом и стеклом. Содержание элементов в чёрных стёклах колеблется в значительных пределах (мас. %): SiO₂ - 11-27; TiO₂ - 20-46; FeO - 6-38; Al₂O₃ - 2-9; MgO - 1,4-7,3; CaO - 5-15; MnO - 9-33; Na₂O -0-2,4; $K_2O - 0-3$ (см. табл.).

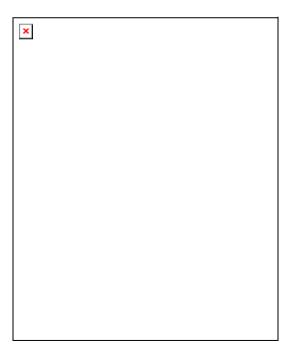


Рис. 3. Магнитные сферулы [Сандимирова и др., 2003, 2003а]:

а - силикатная сферула с газовыми полостями; 6 - сферула, образованная гексагональными кристаллами магнетита; в сферула с хорошо выраженными на поверхности скелетными кристаллами магнетита; г сферула, сложенная магнетитом хорошо видны грани роста и вершина октаэдрического кристалла магнетита; д - сферула, состоящая из ядра (железо самородное - Fe) и оболочки из магнетита (Mt); е - пустотелая магнетитовая сферула. На внутренней поверхности видна структура распада гематита (полоски светло-серого цвета) в магнетите (серое). Сканирование, "Stereoscan-600" (ИГЕМ РАН, г. Москва).

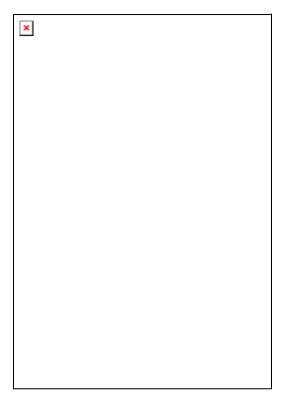


Рис. 4. Характерные структуры роста в сферулах и шлаковидных частицах [Сандимирова и др., 2003, 2003al.

В сферулах (а-д):

- а сноповидная, представленная минеральными фазами Мпильменит-пирофанитового состава:
- **б** скелетная кристаллы Mnульвошпинели в стекле:
- в скелетная, представленная магнетитом (Mt) и ульвошпинелью (Usp) в стекле (Gl);
- г увеличенный фрагмент рисунка
- д полигонально-зернистая структура магнетита:
- е структура раскристаллизации в шлаковидных частицах – ламелли ильменита (II) и скелетные кристаллы шпинели (Sp) в стекле. В отраженных электронах. "Camebax-246" (ИВиС ДВО РАН, г.

Петропавловск-Камчатский).

Третий тип сферул сложен плотно упакованными между собой зернами магнетита. Тончайшие границы между зёрнами иногда выполнены стеклом, которое подчеркивает полигонально-зернистое строение магнетита (рис. 4д). Среди сферул встречаются индивиды с очень выразительной скульптурной поверхностью (рис. 36-г). В некоторых из них в срезе в отражённом свете наблюдаются петельчатые, субграфические, пластинчатые и решётчатые структуры распада гематита в магнетите. Структурный рисунок либо равномерно распределен по всему срезу, либо локализуется в центральной части сферул.

Сопутствующие минералы и минеральные образования. Совместно со сферулами часто встречаются обломки вулканического стекла тёмно-бурого цвета и чёрные шлаковидные частицы. В обломках стекло аморфно или со следами раскристаллизации. В виде включений в стекле присутствуют мелкие звездочки марганцевой ульвошпинели и круглые или неправильной обтекаемой формы выделения самородного железа, которые образуют вытянутые в длину скопления, подчеркивая тем самым направление течения вещества. В шлаковидных частицах матрица сложена высокотитанистым стеклом (табл., ан. 18), в котором находятся ламелли марганцевого ильменита и скелетные кристаллы Mg-Cr-Mn-Ti-шпинели (рис. 4e). Сопоставление составов силикатных

сферул, обломков тёмно-бурого стекла и шлаковидных частиц показало, что это генетически родственные образования. Совместно со сферулами также встречаются соединения типа Zn-O, Pb-Sn, Cu-Zn, Cu-Pb-Sn, Cu-Zn-Sn-Pb; самородные металлы - Cu, Pb, Zn, Ag, Fe и другие акцессорные минералы: рутил, альмандин, циркон, хром-магниевая шпинель, графит и углеродистые частицы, муассанит, разноцветный (синий, голубой, розовый, зеленый) корунд. Интерметаллиды и самородные металлы обычно имеют вид неправильных округлых зерен, спиралеподобных проволочек или пластинок с рваными краями, в редких случаях они встречаются в виде сферул (природная латунь, самородное железо).

Таблица. Химический состав стёкол по результатам микрозондового анализа (мас. %).

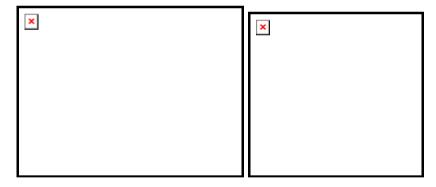
$N_{\underline{0}}$	$N_{\underline{0}}$	SiO ₂	TiO ₂	Al_2O_3	FeO	Cr ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	MnO	Сумма
п/	зер-						_					-
П	на											
1	2	5	6	7	8	10	11	12	13	14	15	16
1	1	14,10	35,97	8,90	12,27	0,26	4,02	14,77	-	-	9,27	99,56
2	2	19,05	34,02	3,46	19,91	0,49	3,31	6,69	0,36	0,96	10,79	99,04
3	3	17,74	32,25	3,37	22,31	0,61	3,31	6,02	-	0,31	11,37	97,29
4	4	17,80	41,56	4,61	11,17	-	2,89	6,99	0,60	2,13	12,77	100,53
5		17,22	36,31	3,88	23,06	-	2,69	5,83	0,45	2,37	8,84	100,66
6		19,11	35,26	4,36	12,86	-	2,31	8,48	0,49	2,02	14,84	99,77
7		22,40	30,18	4,18	10,02	-	1,58	12,34	0,49	2,11	16,61	99,91
8		19,03	39,43	4,24	10,92	-	2,68	7,35	0,44	2,11	12,66	98,84
9		14,02	44,64	3,59	14,48	-	2,76	5,79	0,49	1,92	12,36	100,06
10		26,01	28,69	4,70	8,91	-	1,62	11,66	0,57	2,88	15,52	100,55
11	5	30,75	19,24	2,03	9,77	1,07	1,85	3,41	-	-	30,67	98,79
12	6	26,66	28,74	4,66	7,65	-	1,40	10,80	0,94	2,82	15,34	99,02
13		14,77	40,16	3,89	17,41	0,13	3,30	5,04	0,57	2,07	12,21	99,55
14	7	19,86	37,41	7,47	10,19	-	6,14	0,39	2,18	2,26	14,13	100,03
15	8	15,12	24,67	6,00	30,85	0,27	5,28	0,14	2,38	1,72	12,44	98,86
16	9	12,91	48,15	2,14	6,33	-	3,04	10,56	-	0,68	15,43	99,23
17	10	32.52	27.55	6.06	5.97	0.20	5.12	7.32	1.23	2.18	11.37	99.52
18	11	26,97	28,16	3,65	13,14	0,53	3,35	5,52	0,93	3,02	14,08	99,35

Примечание. Анализы выполнены в Институте вулканологии и сейсмологии ДВО РАН на приборе «Сатевах-246» (г. Петропавловск-Камчатский), аналитики — В.М.Чубаров, Т.М.Философова, Е.И.Сандимирова. Анализы: 1-16 — стекло из силикатных и рудно-силикатных сферул; 17 — обломки тёмно-бурого стекла; 18 — шлаковидные частицы чёрного цвета. Прочерк — содержание элемента ниже предела чувствительности метода.

Сравнение химического состава стёкол из сферул с аналогами других геологических обстановок показало, что по содержанию TiO₂, салических и фемических компонентов курило-камчатские сферулы чёрного цвета имеют сходство с подобными образованиями из магматических и вулканических пород разного состава (Сандимирова, 2007). И они существенно отличаются от

алюмосиликатных сфероидов гидротермальных месторождений. Однако недостаток аналитических данных по другим объектам пока не позволяет говорить о том, что состав сферул является чётким критерием их принадлежности к той или иной породе или геологической обстановке.

Глава 4. Вулканизм и характер распределения сферул в разрезах скважин


О связи сферул с вулканизмом известно давно. Они описаны в меловых вулканических сериях Северной Армении и мел-палеогеновых вулканитах Восточно-Сихотэ-Алинского и Охотско-Чукотского вулканогенных поясов (Мнацаканян, 1965; Хенкина, 1978; Филимонова и др., 1981; Филимонова, 1985), образуют обширные ореолы рассеяния вблизи разновозрастных взрывных структур щитов и платформ (Розова и др., 1984; Взрывные..., 1985; Татаринов, Яловик, 2003 и др.). Они также были установлены в плиоценовых песчаноалевритовых отложениях Южного Тимана (Республика Коми), где их происхождение связывают с эксплозивным кимберлитовым вулканизмом (Жарков, Мальков, 2000). Сферулы встречаются в пирокластических осадках кратерных озёр (Cornen и др., 1992; Карпов и др., 1984), в вулканических пеплах различной формационной принадлежности (Heiken, Wohletz, 1985), в том числе и в пеплах современных вулканов Камчатки (Гирина, Румянцева, 1993; Муравьев и др., 2002; Карпов, Мохов, 2004). Однако роль эксплозивного вулканизма в образовании и распространении сферул многими явно недооценивается. Связано это с тем, что в областях с активной вулканической деятельностью сферулы до настоящего времени оставались слабо изученными.

Чтобы установить связь сферул с литологическим типом пород, а также оценить влияние эксплозивного вулканизма на характер их распространения в отложениях, были проанализированы разрезы нескольких скважин глубокого бурения. Для примера в работе представлены четыре наиболее изученных разреза. Это скважины: 65 (1000 м) - Океанское геотермальное месторождение, о. Итуруп; ГП-3 (2500 м), 4ГП (1270 м) - Северо-Парамуширское геотермальное месторождение, о. Парамушир; РЭ-6 (1170 м) - Паратунское геотермальное месторождение, Южная Камчатка.

Общая мощность разреза, вскрытая скважинами, составляет около 3600 м, возраст пород - от верхнего палеогена до настоящего времени. Разрез представлен мощной толщей пирокластических и вулканогенно-осадочных пород, которые изредка прорываются субинтрузивными телами основного состава. Неогеновые отложения обычно перекрыты чехлом четвертичных андезитовых лав. Частота опробования пород составила 10-50 м, средний вес пробы - от 500 г до 1 кг. Установлено, что сферулы встречаются практически на всем протяжении разреза. Некоторые пробы не содержат сферул, в других - их число не превышает 1-5, но на некоторых горизонтах их количество существенно возрастает и составляет первые сотни – до тысячи и более зёрен на пробу.

Пробы с максимальным количеством сферул (до тысячи и более зёрен на пробу) приурочены к некоторым слоям туфов, туффитов и туфоалевролитов. Помимо сферул и сопутствующих им акцессорных минералов, в тяжелой фракции проб обычно присутствуют магнетит, титаномагнетит, ильменит, ромбический и моноклинный пироксены (авгит, диопсид), плагиоклазы (чаще основного состава), редко - роговая обманка, оливин и кварц. В аншлифах из керна сферулы установлены в метасоматически изменённых туфах андезитодацитового состава (скв. 65, о. Итуруп) — в цементе и внутри обломков андезитов, а также в неизмененных туфоалевролитах (скв. 4ГП, о. Парамушир) в пелитовой массе среди мелко-тонкообломочной пирокластики (рис. 5).

Сопоставление разрезов скважин по возрасту пород показало, что слои с повышенным количеством сферул чаще всего и с некоторой периодичностью встречаются в верхнемиоцен-плиоценовых пирокластических и мелкообломочных вулканогенно-осадочных отложениях. Это время характеризуется резкой сменой (средний — верхний миоцен) характера протекавшего в регионе относительно спокойного периода вулканизма на период высокой интенсивности с периодами затишья (Федорченко и др.,1989). Начало этих процессов приходится на время преобладающих нисходящих движений и накоплением мощных толщ пород в прибрежно-морских условиях, окончание совпадает с эпохами воздымания и общего выравнивания рельефа.

Рис. 5. Железо-силикатная сферула в псаммитовом туфоалевролите (а), б – увеличенный фрагмент. Скв. 4ГП, глубина 695 м. Аншлиф, фото.

Главным поставщиком обломочного материала в отложениях Курил и Камчатки служат очень мощные эксплозивные извержения (Бутузова, Лисицына, 1980; Новейший..., 2005). По данным Е.К.Мархинина (1966), количество пирокластических продуктов исторических извержений вулканов Курило-Камчатской островной дуги составляет 94 %, причем доля пепла в виде тонкой пыли может составлять до 75 и более процентов от всего выброшенного материала. В составе пирокластики в подчинённом количестве встречаются в

основном обломки пород жерловой части вулкана и редко продукты разрушения ранее образованных магматических или осадочных пород (Гущенко, 1965).

Выводы. Форма сферул, обломков стёкол и шлаковидных частиц, характерная для вулканических пеплов (Heiken, Wohletz, 1985), их приуроченность к пирокластическим или вулканогенно-осадочным породам и характер распространения в вулканических толщах свидетельствуют о том, что сферулы попадают в эти отложения вместе с эксплозивным материалом. Вариации концентрации сферул в слоях вулканогенно-осадочных пород связаны, скорее всего, с характером накопления осадков и могут совпадать с периодами вулканической активности (Сандимирова, 2005, 2006).

Глава 5. Генезис сферул

Проблема происхождения сферул очень многогранна и весьма дискуссионная. Из-за недостаточной изученности сферул до настоящего времени не выработано чётких критериев для разделения их по происхождению. Хотя полностью исключить вероятность космического или техногенного происхождения сферул невозможно, полученные нами результаты позволяют говорить о том, что это земные эндогенные образования.

Поскольку скважины проходились с целью извлечения горячей воды, часто в интенсивно изменённых гидротермальными процессами породах, то ранее было высказано предположение, что сферулы имеют газо-гидротермальное происхождение [Рычагов и др., 1996; Rychagov et al., 1996; Рычагов и др., 1997]. Такая точка зрения основывалась на представлениях, согласно которым близкие установленным ассоциации самородных металлов встречаются в гидротермальных рудах [Новгородова, 1983]. Однако выяснилось, что сферулы имеют более широкое распространение в мощных толщах вулканических пород, в том числе и за пределами гидротермально-изменённых участков (Сандимирова, 2005, 2006). Таким образом, на сегодняшний день получены новые данные, которые позволяют высказать ещё одну точку зрения о происхождении сферул, и согласится с теми исследователями, которые считают, что сферулы имеют магматическое происхождение и связаны с эксплозивной деятельностью вулканов.

5.1 Механизмы и условия образования сферул

Наиболее разработан вопрос образования сферул для магматических систем (Маракушев, Безмен, 1983; Олейников и др., 1985; Рябов и др., 1985 и др.). Достаточно подробно процесс раннемагматического расщепления (расслоения) силикатных расплавов на матрицу и оливин-пироксеновые каплевидные обособления (хондры) рассмотрен на примере метеоритных хондритов в работе

А.А.Маракушева и Н.И.Безмена (Эволюция..., 1983). Модель металлизации основных магм (обособление металлических капель от силикатной матрицы и их раннемагматическое окисление) представлена на примере траппов Сибирской платформы в одной из работ Б.В.Олейникова (Металлизация..., 1981). Авторы подчёркивают флюидный характер отщепления силикатных и рудных капель от расплава.

Образование сферул, судя по всему, происходит на протяжении всего магматического процесса, начиная с довнутрикамерного периода эволюции расплава (Округин и др., 1981). По мере подъема магмы к поверхности Земли, часть капель самородного железа захватывается кристаллизующимися силикатными минералами и окисляется, происходит, как полагают, раннемагматическое окисление и образование иоцит-магнетитовой оболочки (Самородное..., 1985). В виде включений магнетитовые сферулы установлены в интрузивах и эффузивах андезибазальтового состава в наиболее ранних генерациях вкрапленников пироксенов и плагиоклазов, а также в основной массе (Хенкина, 1978). На более поздних этапах они отлагаются на стенках газовых полостей и трещин магматических пород, о чем свидетельствуют следы прикрепления сферул к поверхностям. По данным (Акимцев, 1992; Штеренберг, Воронин, 1994; Главатских, 1995; Шарапов и др., 2001; Филимонова, 1985) они характерными компонентами минеральных ассоциаций, развивающихся на стенках пустот основных эффузивов, средних и кислых вулканитов. Сферулы также образуются при остывании раскалённых обломков породы во время отложения эксплозивного материала из палящих туч. На поверхности некоторых обломков встречаются мелкие блестящие капельки чёрного цвета в виде полусфер, как бы наплавленные на поверхность. Возможность образования таким путем подтверждается и экспериментально (Л.Н.Овчинников, 1960). Некоторые считают, что сферулы образуются в результате вторичного подплавления пород с участием высокотемпературных восстановительных флюидов (Малич и др., 1991; Розова и др., 1984; Ермолов, Королюк, 1978).

Форма сферул и металлов говорит о том, что они могли сформироваться в потоке газовых струй при извержении вулканов с участием природных электростатических сил. По данным И.И.Гущенко (1965) свежий пепловый материал на 85-95% обладает электромагнитными свойствами. В условиях эксперимента магнетитовые сферулы получали путём сплавления метеоритной металлической стружки в электрической дуге (Юдин, 1969). Редкие находки сферул и частиц самородных металлов недавно были установлены в свежих пеплах андезитовых вулканов Камчатки - Карымский и Шивелуч (Карпов, Мохов, 2004). Предполагается, что они могли формироваться в условиях вихрей при отрыве от вязкой массы расплава. Большая роль при этом отводится газовым флюидам, в составе которых существенное место занимают, как полагают авторы, вода и водород.

Температурный интервал образования сферул и сопутствующих минералов достаточно широк, по разным оценкам он составляет в среднем $1200\text{-}600^{\circ}\text{C}$

(Округин и др., 1981; Слободской, 1981; Шарапов и др., 2001; Пушкарев и др., 2002).

Скорость остывания сферических и шлаковидных частиц, выброшенных при извержении вулкана, приближенно оценивают в 20-80°С/час, при этом полагают, что для частиц с едва различимыми кристаллитами рудных минералов скорости охлаждения намного превышают 210°С/час (Взрывные..., 1985). В условиях эксперимента при мгновенном нагреве до 2000°С и быстром охлаждении силикатных минералов процесс образования сферул происходит в течение трехчетырех секунд (Флоренский и др., 1968).

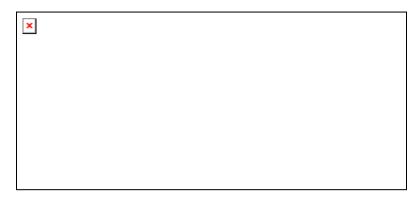
Форма сферул и многочисленные газовые поры в них, а также форма металлов, обусловлены высокой газонасыщенностью среды. Среди находок из отложений Курил и Камчатки встречаются магнетитовые сферулы с «хвостом» из самородного железа, напоминающие комету. Многие частицы самородных металлов и интерметаллических соединений также имеют удлиненные, закрученные формы, что характерно для роста металлов в газовой струе (Главатских, 1995). Считается, что основными восстановителями в глубинных потоках являются H₂, CO, CH₄ и другие углеводороды (Слободской, 1981), о значительном содержании которых свидетельствуют находки графита и муассанита. Высокое содержание этих же газов определяется в базальтовых породах Камчатки и Сибири (Башарина, 1964; Олейников и др., 1992), а также в вулканических газах Камчатки (Меняйлов и др., 1984 и др.).

Ассоциация сферул, самородных металлов, сплавов и интерметаллических соединений - показатель резко восстановительной среды минералообразования. На этом фоне происходит постепенное повышение окислительного потенциала, которое выражается в появлении простых и сложных оксидов элементов, характеризующихся высокой степенью сродства к кислороду, таких как иоцит, корунд, рутил, а также ильменит и армолколит. Процесс эволюционного развития флюидно-минеральной системы отражается и в составе железомагнетитовых сферул – от самородного железа до гематита (Fe \rightarrow FeO \rightarrow Fe₃O₄ \rightarrow Fe₂O₃).

Рудные и силикатные сфероиды встречаются и в гидротермальных рудах (Новгородова и др., 1981, 1983, 2003; Гамянин, Жданов, 2002 и др.). Однако их место в гидротермальном процессе пока не совсем ясно, поскольку, как и в большинстве случаев, сфероиды выделяют из тяжелой фракции измельченных проб. М.И.Новгородова в одной из работ (Новгородова и др., 2003) рассматривает алюмосиликатные сферулы из золоторудных месторождений как капли расплава высокоплотных солевых фаз, которые образуются при аномально высоких флуктуациях температур и давлений, возникающих при схлопывании пузырьков и высоких скоростях этого процесса в ограниченных объемах минерализующихся трещин. В целом, образование сферул связывается с локальными микровзрывными кавитационными явлениями в потоке вскипающих гетерогенизирующихся гидротермальных растворов. Нашими исследованиями не выявлено прямой связи сферул с гидротермальными

процессами, а сравнительный анализ составов показал, что курило-камчатские сферулы существенно отличаются от сферул гидротермальных месторождений высоким содержанием Fe, Ti и Mn.

Выводы. Морфология и вещественный состав сферул, парагенезис с характерными акцессорными минералами, особенности их распределения в разрезах скважин, отсутствие прямой связи с гидротермальными изменениями пород, а также анализ обширного литературного материала, позволили прийти к следующему. Обнаруженные в вулканических породах Курильских островов и Камчатки сферулы имеют магматическое происхождение и связаны с вулканизмом. Они могут формироваться на протяжении всего магматического процесса, но наиболее благоприятная обстановка для их образования создаётся при вскипании и дегазации магматического расплава, а также во время эксплозивных выбросов, сопровождающихся взрывными явлениями и процессами плавления. Сферулы образуются в результате быстро протекающих газотранспортных реакций, с участием восстановленных флюидов, которые способствуют расщеплению вещества на несмешивающиеся компоненты по типу ликвации и приводят к образованию рудных, рудно-силикатных или силикатных капель расплава.


Глава 6. Вторичные изменения сферул при метасоматозе вулканических пород

Процесс вторичного преобразования сферул рассмотрен на примере образца керна из скважины 65 (о. Итуруп). Образец представлен окварцованным литокластическим туфом андезито-дацитового состава, глубина отбора пробы 190-200 м. Интервал характеризуется широким развитием процессов метасоматоза (Рычагов и др., 1992ф). Порода интенсивно окварцована, широко развит калиевый полевой шпат, меньше пирит и кальцит.

Исследование аншлифов показало, что сфероиды встречаются внутри обломков андезитов, на их поверхности, а также в пространстве между ними – в цементе туфа (рис. 6). В обломках андезитов они расположены в основной массе, иногда находятся в тесном срастании с хорошо образованными плагиоклазами. Плагиоклазы почти полностью замещены калиевым полевым шпатом. Наименее измененные участки плагиоклаза по результатам микрозондового анализа содержат 36-42% An, что соответствует андезину. Рудные сферулы замещены пиритом, при этом в некоторых из них сохраняются реликтовые структуры роста, образованные иглами рутила в виде тригональной сетки (рис. 7). Как отмечает П.Рамдор (1962), рутил возникает при пиритизации породы в результате превращения титансодержащих, особенно железистых минералов. Первоначально такие сферулы имели, скорее всего, титаномагнетитовый или ильменит-магнетитовый состав. Структуры распада в

20

виде тригональных сеток, представленные гематитом в магнетите, встречаются и в неизменённых сферулах из тяжёлой фракции проб.

Рис. 6. Рудные (белые) и силикатные (серые) сферулы в метасоматически изменённом псефо-псаммитовом туфе андезито-дацитового состава. Белое – пирит, Ар – апатит. Аншлиф, фото, ув. х15.

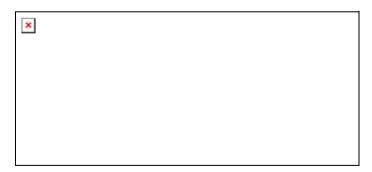


Рис. 7. Сферула с реликтовой структурой, представленной тригональной сеткой рутила (серое) и пиритом (белое) в основной массе обломка андезита. Аншлиф, фото, ув. x150.

Сфероиды, расположенные на поверхности обломков или вблизи этой поверхности, за пределами обломка, имеют вид сфер или полусфер с радиально-лучистым или зональным строением и образуют «рудные пены», гроздьевидные скопления или отдельные сферулы. Они, предположительно, образовались в процессе остывания раскалённых обломков пород и имели, скорее всего, магнетитовый состав. Все они замещены пиритом. По данным Л.Г.Филимоновой и др. (1989) радиально-лучистая структура выявляется в «свежих» магнетитовых сферулах при травлении их концентрированной соляной кислотой. В неизменённых сферулах радиально-лучистых структур не заметно, но, возможно, под действием гидротермальных растворов, в результате выноса некоторых элементов (естественном травлении), они становятся хорошо видимыми. Стоит подчеркнуть, что пирит, который замещает сфероиды, не образует сплошной каймы вдоль поверхности обломков пород, не наблюдается зональность и ритмичность, характерная для отложения вещества из гидротермальных

растворов в прожилках или пустотах. Он отлагается фрагментарно, только на месте той части сфероидов, которая ранее, вероятно, была сложена оксидами железа.

Несколько отличаются от выше описанных сферулы, которые расположены в цементе туфа (рис. 6, 8). Скорее всего, они были выброшены вместе с пепловым материалом. Макроскопически такие сферулы имеют чёрный цвет и размер от 0,1 до 0,4 мм. Они как бы «плавают» в кварц-полевошпатовой массе, образовавшейся на месте тонкого пелитового материала. В отражённом свете и отражённых электронных лучах видно, что некоторые сферулы внутри были заполнены газом. Границы сферул подчеркнуты тонкой пиритовой каймой. Пирит отложился, либо на месте рудного минерала, либо на месте пространства, образовавшегося у поверхности сферулы. В некоторых сферулах с поверхности внутрь свободно растут призматические кристаллы апатита. Кристаллы апатита встречаются и внутри обломков пород - в изометричных порах (рис. 6), и в виде включений в плагиоклазах. Микролиты фторапатита, сфена, циркона, пирротина, графита, каплевидных выделений халькопирита, пентландита, пирита, золота, графита, плагиоклаза № 45-50 и кварца были установлены в титаномагнетитовой матрице сферул из гранитоидов Северного Алтая [Баженов и др., 1991]. Присутствие кристаллов фторапатита в сферулах, по мнению авторов, обусловлено высокой концентрацией фосфора. Предполагается, что это связано с базитовой специализацией расплава. Обилие игольчатых вростков апатита также установлено в светлоокрашенных сферулах из габбро-долеритов траппов Сибирской платформы [Рябов и др., 1985]. Повышенная фосфатизация в целом характерна для туфов и туфогенных пород, образование которых связано с вулканическими извержениями центрального типа, преимущественно с основным андезибазальтовым составом лав [Бродская, Ильинская, 1966].

Рис. 8. Сферулы в цементе окварцованного туфа. Тонкая оболочка подчёркнута пиритом (Ру). а - внутрь сферулы растут кристаллы апатита (Ар), пространство между ними заполнено рыхлой массой полевошпатового состава (Кпш). б – внутри сферулы – кристаллы апатита, остатки стекла и масса полевошпатового состава. Аншлиф, фото в отражённых электронах, «Сатевах-246» (ИВиС ДВО РАН, г. Петропавловск-Камчатский). Ув. х200.

Внутри сфероидов, пространство между кристаллами апатита обычно заполнено массой полевошпатового состава, часто встречаются кремнистые «островки» неправильной формы (рис. 8б), кальцит и основной плагиоклаз, который замещается калиевым полевым шпатом. Наименее изменённые участки плагиоклаза соответствуют лабрадору (54-67% An). Не совсем ясно происхождение кремнистых «островков». Вероятнее всего, это остатки стекла. Макроскопически они имеют чёрный цвет по сравнению с бежевым цементом, в котором находятся сферулы. По составу же они близки к кварцу, но имеют более высокое содержание железа (до 1,5 мас. %), чем кварц, развивающийся по обломкам и по цементу туфа. Возможно, «островки» внутри сферул является остатками кислого стекла. Среди «свежих» сферул встречаются редкие экземпляры, сложенные практически беспримесными алюмосиликатными стёклами. Или это новообразованный кварц, который заполняет свободное пространство, а за счет микропримесей пирита имеет чёрный цвет и несколько более высокое содержание железа?

Вывод. Толща туфов, в которой обнаружены сферулы, была образована раскалённым диспергированным материалом андезито-дацитового состава во время извержения вулкана. Часть сферул образовалась в процессе кристаллизации магматических пород, которые в виде обломков были выброшены на поверхность, часть - при остывании обломков и пепла, а часть, вероятно, попала в толщу вместе с пеплом. Присутствие внутри сферул из цемента туфа апатита и остатков основного плагиоклаза, которые встречаются и внутри обломков андезитов и представляют собой центры нуклеации сферул, говорит о единой природе их образования - магматической. В результате гидротермального преобразования сфероидов сохранилась форма, внутренняя структура и относительно устойчивые минералы, такие как апатит и плагиоклаз, а также стекло. На месте железистых оксидных минералов образовался пирит, на месте железо-титанистых – пирит и рутил. Свободное пространство в пустотелых сферулах было заполнено калиевым полевым шпатом, который частично или полностью заместил основной плагиоклаз, а также кальшитом и кварцем.

Заключение

Впервые проведены комплексные исследования необычных минеральных образований сферической формы из глубоких разрезов вулканических пород в скважинах, пробуренных в пределах современных гидротермальных систем Курильских островов и Камчатки. Изучен состав и строение сферул, проведена их систематизация по морфологии и минеральному составу, охарактеризован комплекс сопутствующих минералов. Установлено, что сферулы это полиминеральные природные образования, в строении которых принимают участие самородное железо, магнетит, гематит, ульвошпинель, ильменит, а также стекло и другие минералы и минеральные фазы. Сферулы имеют характерные

скелетные, сноповидные, эвтектоидные и решетчатые структуры роста и распада и находятся в парагенетической связи с самородными металлами, интерметаллическими соединениями и другими акцессорными минералами. Сравнительный анализ химического состава сферул с аналогами других геологических обстановок показал, что курило-камчатские сферулы имеют сходство с подобными образованиями из магматических и вулканических пород разного состава. Главной особенностью курило-камчатских сферул является присутствие в них чёрного стекла с низким содержанием SiO_2 и высоким содержанием TiO_2 , FeO и MnO.

Показан характер распространения сферул в разрезах скважин и установлена их связь с литологическим типом пород. Изучен разрез вулканических отложений олигоцен-четвертичного возраста общей мощностью около 3600 м, который охватывает значительную часть истории развития Курило-Камчатской островной дуги, что позволило выявить некоторые закономерности накопления сферул в течение достаточно длительного времени – более 2 млн. лет. Установлено, что единичные сферулы встречаются на протяжении всего разреза, а максимальные концентрации приурочены к некоторым слоям пирокластических и вулканогенно-осадочных пород. Обнаружение сферул в коренном залегании в туфоалевролитах и псаммитовых туфах позволяет сделать вывод о том, что они попали в отложения вместе с пирокластикой, а вариации концентрации сферул в отложениях связаны, скорее всего, с характером накопления осадков и могут соответствовать пикам эксплозивной активности вулканов.

Рассмотрены вопросы, связанные с генезисом сферул. Показано, что механизмы образования сферул разнообразны, но условия очень близки. Сферулы образуются во флюидных (флюидно-магматических) системах в результате быстро протекающих газотранспортных реакций, которые способствуют расщеплению вещества на несмешивающиеся компоненты по типу ликвации и приводят к образованию рудных, рудно-силикатных или силикатных капель расплава. Форма сферул и минеральный состав, а также приуроченность к пирокластическим отложениям свидетельствуют о том, что они имеют магматическое (позднемагматическое) происхождение и связаны с эксплозивными процессами.

Изучены сфероиды в коренном залегании в метасоматически изменённых туфах и рассмотрены вопросы, связанные с их вторичным преобразованием. Показано, что сферулы имеют первично-магматическую природу, но под действием гидротермальных растворов замещаются вторичными минералами, при этом реликтовые структуры роста могут сохраняться.

Список основных публикаций по теме диссертации

1. Рычагов С.Н., Главатских С.Ф., **Сандимирова Е.И.** Рудные и силикатные магнитные шарики как индикаторы структуры, флюидного режима и

24

минералорудообразования в современной гидротермальной системе Баранского (о-в Итуруп) // Геология рудных месторождений, 1996, т. 38, № 1, с. 31-40.

- 2. Rychagov S.N., Glavatskih S.E., **Sandimirova E.I.** Ore and silikate magnetic peiies as indicators of structire and slnid redime, as well as mineral and ore formation in the present day Baranskii hydrothermal system, Iturup island // Geology of Ore Deposits, 1996, vol. 38. Pp. 26-34.
- 3. Рычагов С.Н., Главатских С.Ф., **Сандимирова Е.И.** Рудные и силикатные магнитные шарики как индикаторы структуры и флюидного режима современной гидротермальной системы Баранского (о. Итуруп) // ДАН, 1997, т. 356, №5. С. 677-681.
- 4. Сандимирова Е.И. Шаровидные минеральные образования в современных гидротермальных системах Курильских островов и Южной Камчатки (особенности строения и состава) // Тез. докл. к IX съезду Минералогического общества при РАН. Санкт-Петербург, 17-21 мая 1999 г. С. 112-114.
- 5. Рычагов С.Н., Белоусов В.И., Главатских С.Ф., Ладыгин В.М., **Сандимирова Е.И.** Северо-Парамуширская гидротермально-магматическая система: характеристика глубокого геологического разреза и модель современного минерало-рудообразования в ее недрах // Вулканология и сейсмология, 2002, №4. С. 3-21.
- 6. **Сандимирова Е.И.,** Главатских С.Ф., Рычагов С.Н. Магнитные сферулы из вулканогенных пород Курильских островов и Южной Камчатки // Вестник КРАУНЦ. Науки о Земле. Петропавловск-Камчатский, КГПУ. 2003, № 1. С. 135-140 (http://www.kscnet.ru/kraesc/2003/2003_1/art14.pdf).
- 7. **Сандимирова Е.И.,** Главатских С.Ф., Рычагов С.Н. Типоморфные особенности магнитных сферул из вулканогенных пород Курильских островов и Южной Камчатки // Вулканизм и геодинамика. Материалы докладов II Всероссийского симпозиума по вулканологии и палеовулканологии. Екатеринбург, 2003а. С. 568-573.
- 8. Рычагов С.Н., Пушкарев В.Г., Белоусов В.И., Кузьмин Д.Ю., Мушинский А.В., Сандимирова Е.И., Бойкова И.А., Шульга О.В., Николаева А.Г., Егорова Н.П. Северо-Курильское геотермальное месторождение: геологическое строение и перспективы использования // Вулканология и сейсмология, 2004, № 2, с. 56-72.
- 9. **Сандимирова Е.И.** Рудная минерализация в вулканогенных отложениях Северо-Парамуширского геотермального района // Геотермальные и минеральные ресурсы областей современного вулканизма (Материалы международного полевого Курило-Камчатского семинара, 16 июля - 6 августа 2005 г.). Петропавловск-Камчатский, 2005. С. 408-417 (http://kcs.dvo.ru/ivs/publication/kuril kam2005/art29.pdf).
- 10. Сандимирова Е.И. Магнитные сферулы из кайнозойских отложений Курильских островов и Южной Камчатки // Материалы докладов III Всероссийского симпозиума по вулканологии и палеовулканологии. Улан-Удэ, 2006, т. 3. С. 766-771.
- 11. Сандимирова Е.И. Особенности химического состава силикатных сферул из вулканических пород Курильских островов и Южной Камчатки // Проблемы геохимии эндогенных процессов и окружающей среды. Мат. Всерос. науч. конф., 24-30 сентября 2007 г., г. Иркутск. Иркутск, 2007. Т. 2. С. 217-221.