
1 Introduction 
 
Over a decade ago, the Bulletin of the Far Eastern 

Branchof the Russian Academy of Sciences published a 
paper entitled “On the galactic influence on  Earth during 
the last seven hundred million years” (Nechaev, 2004). 
This paper presented a hypothesis, which is used as a basis 
for this work. It was written in Russian, and because of 
this, an outline of this hypothesis is first needed here as an 

introduction. 
The galactic seasons of the Earth indicate significant 

changes caused by its distance from the Sun while that star 
was flying along its elliptical orbit (Weissman, 2014). 
Under the gravitational influence of a huge mass at the 
galactic center, the Solar System, including  Earth, became 
extended when it moved closer to the center and then 
contracted back towards the Sun when it became more 
distant. So the galactic winters on the Earth coincided with 
the ‘summer’ (closer to the galactic center) position of the 
Solar System and vice versa. Galactic winters occurred 
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during  the  Vendian,  Carboniferous-Permian  and  Late 
Cenozoic  periods,  times  characterized  by  long-term 
decreases  in  global  temperature  and  biodiversity,  in 
addition to the formation of the supercontinents (Carr and 
Bell, 2014; Scotese, 2002; Sepkoski,1984). In the warmer 
seasons, the Earth resembled Venus (Smrekar et al., 2014) 
with its widespread mafic volcanism, disseminated thicker 
crust, dense ‘gas-laden’ atmosphere and associated strong 
greenhouse effect (Berner and Kothavala, 2001; Ronov, 
1993; Scotese, 2002).  

As  slower  orbital  velocities  of  the  Solar  System 
operated in the past, the galactic year of the Earth was 
about 500 million years in the late Precambrian (the time 
interval  between  the  formations  of  the  Rodinia  and 
Pannotia/Gondwana  supercontinents),  350-400  million 
years from the latest Precambrian to the Permian (the 
Pannotia/Gondwana-Pangea cycle), and 250-300 million 
years after the Permian (Fig. 1).  

Many other ideas exist regarding Earth’s evolution. For 
example, Kotelkin and Lobkovsky (2007), Lobkovsky et 
al. (2004) and Nance et al. (2014) all consider the major 
solid earth changes, such as the supercontinent cycles and 
related  biogeochemical  processes,  as  being  solely 
controlled by the mantle and core dynamics, including 
subduction  of  large  volumes  of  oceanic  lithosphere, 
avalanching them to the core-mantle boundary, and the 
subsequent formation of super plumes (Larson, 1991). 
However, these researchers concentrated on our planet per 
se, as though it behaves as an independent body within the 
Universe. The presented models, however, can adapt a 
galactic influence on geological evolution (Lobkovsky et 
al., 2004). 

Other authors focused on the Sun, Earth, and galactic 
relationships.  Shaviv  and  Veizer  (2003)  found  a 
correlation  between  changes  in  Earth’s  climate,  solar 
radiation and wind intensity, and the galactic ray flux. 
According to this model, the Earth became colder and 
suffered from severe geological crises when passing the 
spiral arms that generate intensive cosmic rays. Following 

and developing this hypothesis, Wendler (2004) suggested 
that significant turbulent magnetic influences of the spiral 
arms resulted in reversing geomagnetic fields, while the 
geomagnetic regime with sparse reversals (superchrons) 
occurred while the Solar System was positioned in the 
space between the spiral arms. However, this seems to 
conflict with a more recent study showing that enhanced 
turbulence  in  Earth’s  liquid  core  produced  the 
geomagnetic regime with sparse reversals, one of which 
took  place  during  the  warm  Cretaceous  time 
(Kurazhkovskii et al., 2015).  

Barenbaum (2012, 2013 and references therein) found 
even more associations of geological events with “the 
impact of the Galaxy at the moments when the Solar 
System  gets  into  the  jet  flows  and  spiral  galactic 
arms” (Barenbaum, 2012; page 1). The geological events 
were considered to be mostly geological crises, although 
some gradual, evolutionary changes such as the carbon 
cycle  and  the  history  of  phosphate  and  petroleum 
accumulation were included. As with the previous authors, 
Barenbaum concluded that passage of the Solar System 
through the Milky Way’s spiral arms or other gas and dust 
clusters  and  the  free  space  between  them  controlled 
Earth’s evolution. 

Such  an  interpretation,  however,  seems  to  be 
incomplete,  because  catastrophic  events  by  their  very 
nature  indicate  the  sporadic  rather  than  normal  time 
succession  of  the  galactic  year.  In  addition,  previous 
researchers ignored the galactic center, whose influence 
must be highly significant. Earth is circling round it along 
with  the  entire  Solar  System.  Where  can  more  solid 
evidence of its significance be sought? Regardless of this, 
a  correlation  between  the  superplumes,  superchrons, 
supercontinent cycle, warm climates, and related long-
term geological processes has been defined for at least 
Phanerozoic  time,  although  the  (external  or  internal) 
causes are still under discussion. 

 
2 Approaches and Data Sources 

 
This work is devoted to general tendencies of geological 

evolution and concentrates on one of its critical points, the 
Cretaceous Period. It considers data that have already been 
compiled, generalized and interpreted to a certain degree. 
Because of this, and to avoid breaking the logic within the 
reasoning, the results and discussion are combined in the 
text below.  

The first author’s approach for studying the galactic 
influence on Earth, focusing on long-term and gradual 
(evolutionary, seasonal) changes, principally differs from 
other approaches in that they pay more attention to sharp 
(critical or catastrophic) events such as mass extinctions 

 

Fig. 1. A scheme illustrating the suggested temporary 
positions of the Sun and Earth relative to the galactic 
center (after Nechaev, 2004)  
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and comet impacts (for example, Shaviv and Veizer, 2003; 
Wendler, 2004; Barenbaum, 2012, 2013; and references 
therein).  

 
3 Results and Discussion 

 
3.1 Phanerozoic and Late Proterozoic 

According  to  Nechaev  (2004),  the  Solar  System 
periodically passes through critical points of its galactic 
orbit (apo- and perycenters) that should lead to some 
global phases of geological evolution. The last event of 
this kind happened in the Cretaceous when our star (the 
Sun) likely passed the apocenter, the most distant point of 
its galactic orbit. During this event, the Earth could be 
expected to undergo maximum extension, associated with 
its relative closeness to the Sun at that time and then long-
term contraction related to its distancing. Fig. 2 shows 
other associated processes, including increase in surface 
temperature (Scotese, 2002), atmospheric carbon dioxide 
(Berner and Kothavala, 2001), and sea levels (Hallam, 
1992; Snedden and Liu, 2010), as well as the intensive 
development of modern fauna (Sepkoski, 1984), volcanic 
activity  (Ronov,  1993),  ophiolite  production  (Dilek, 
2003),  deep-mantle  sourced  igneous  rocks  such  as 
kimberlites (Jelsma et al., 2009) and carbonatites (Berger 
et al., 2009), and petroleum source rocks (Klemme and 
Ulmishek, 1991). This period also involved the break-up 
of the Pangea super continent (Scotese, 2002) and crustal 
growth, based, in particular, on a compilation of global 
zircon Hf-isotope data and dating (Nance et al., 2014; 
Roberts and Spencer,  2014; Roberts,  2012; Stern and 
Scholl, 2010). The cited zircon dating confirms the idea 
(Nechaev, 2004) that the galactic year of the Solar System, 
controlling the super continent cycles, was longer in the 
past. Indeed, the most significant zircon peaks in the U–Pb 
histogram,  which  indicate  super  continent  assembly, 
occurred at 2700, 1850, 1100, 1000, 500, and 250 Ma 
(Roberts, 2012; page 998). 

The Cretaceous evolutionary turn was reflected by a 
specific  geomagnetic  field  (Granot  et  al.,  2012; 
Molostovskii et al., 2007; Wendler, 2004), including a 
long period when reversals were sparse or too frequent for 
detection  (Jalal  Hyperchron,  N88,  127-83  Ma).  This 
period  was  also  characterized  by  maxima  of  chaotic 
magnetic disturbances, suggesting enhanced turbulence in 
Earth’s liquid core (Kurazhkovskii et al., 2015). Earth’s 
dynamo-machine may not have fully functioned at this 
time (Molostovskii et al., 2007). Similar magnetic features 
characterized our planet during the Kiama Hyperchron 
(R81, 313-267 Ma) and Khadar Hyperchron (R98, 484-
462 Ma), corresponding to the evolutionary turns that 
occurred  during  the  Carboniferous-Permian  galactic 

winter  at  the  perycenter  (perygalacticon)  and  the 
Ordovician  galactic  summer  at  the  apocenter 
(apogalacticon) (see Fig. 2; Molostovskii et al.,  2007; 
Wendler, 2004; and references therein).  

The following includes a compilation of the data and 
their interpretation on the Cretaceous evolution of Earth as 
a whole, and in southern Far East Russia in particular, 
where the authors are most familiar with the geology.  

 
3.2 Cretaceous Turn of Geological Evolution 
3.2.1 The World 

Fig. 3 shows some geological evidence of this turn. The 
global  plate  reorganization  (Matthews  et  al.,  2012; 
Vaughan, 1995), which is indicated by a rose-purple bar to 
the right of the time scale in Fig. 3, occurred 125-100 Ma 
with a maximum at 100-105 Ma. It was most likely related 
to the giant ‘super plume’ initiated at the core/mantle 
boundary (Larson, 1991). Primarily, Larson suggested that 
it arose under the Pacific Ocean floor at 125 Ma from an 
unclear cause, while Utsonomiya et al. (2007) placed its 
genesis within massive lithospheric subduction near the 
centre of Rodinia. In light of our ‘galactic’ interpretation, 
it may be considered as the most important of igneous 
events related to the suggested intersection of the galactic 
orbit  apocenter.  Impulses  of  mafic  magmatism  in 
Gondwana,  forming  the  Parana-Etendeka  and  Comei-
Bunbury large igneous provinces at 134-132 Ma (Martinez 
et al., 2014; Peate, 1997; Zhu et al., 2009), were probably 
first, but later ones included extensive oceanic plateaus, 
such as the now dispersed 120 to 90 Ma Ontong Java-
Manahiki-Hikurangi submarine remnants (Taylor, 2006). 
This  extreme  voluminous  magmatic  activity  was 
accompanied by the influx of hundreds of gigatons of 
carbon into the atmosphere. This event is indicated by the 
early Aptian  (ca.  117 Ma) carbon isotope records  of 
marine carbonate, marine organic carbon, and terrestrially 
photosynthesized carbon by a 3‰–5‰ negative excursion 
(Jahren, 2002). This and similar influxes probably initiated 
the oceanic anoxic events (Hu et al., 2012 and references 
therein;  Martinez et  al.,  2014)  and it  resulted  in  the 
incorporation  of  huge  amounts  of  carbon  and 
hydrocarbons through the biogenic cycles in the hydro- 
and  atmospheres.  The  voluminous  extreme release  of 
magma and fluids  from Earth’s  interior  reached their 
apotheosis at 125-100 Ma. They were most likely caused 
by  some  deformation  in  the  Earth’s  outer  core  that 
enhanced its turbulence (Kurazhkovskii et al., 2015), and 
partial  closure  of  the  deep  channels  under  elevating 
influence of the Earth’s gravitation. Our planet released 
‘escaped  vapor’  at  the  beginning  of  its  seasonal 
contraction. Formation of the colossal petroleum reserves 
sourced by the Aptian-Turonian strata (about 1/3 of all the 
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world’s  oil  and  gas  reserves)  was  one  of  the  great 
economic results of this escape (Klemme and Ulmishek, 
1991; Larson, 1991). 

Biogenic  sedimentation,  which  predominated  in  the 
Early  Mesozoic  oceans,  started  being  replaced  by 
terrigenous deposits at about 120 Ma, when oceanic red 
clays appeared (Hu et al., 2012; and references therein). 
This  process  may  be  associated  with  the  uplift  of 
mountains on the continents that were also linked to the 
start  of  Earth’s  contraction  and  associated  plate 
reorganization.  

The  climate  reacted  to  the  change  of  galactic 
environment indirectly. The direct reflection of the Sun’s 
distancing would cause gradual cooling and aridization on 
the  Earth’s  surface.  However,  the  temperature  was 
gradually  increasing  throughout  the  Early  Cretaceous, 
reaching a maximum in the late Albian-early Turonian 
(Hu et al., 2012; Huber et al., 2002; Puceat et al., 2002), 
when the influxes of greenhouse gases associated with 
volcanic activity were most intensive. After the Turonian, 
steady cooling occurred until the end of the Cretaceous, so 
that climate reflected the galactic event with a significant 
time delay (20 Ma or more). 

Biogenic  changes  indicate  the  Cretaceous  turn  of 
geologic evolution in different ways. For example, large 
dinosaurs that may be considered as a symbol of the 
Mesozoic became extinct  at  the K/T boundary,  while 
angiosperms (flower plants) symbolizing the modern flora 
(Lidgard  and  Crane,  1988)  first  appeared  just  at  the 
suggested Sun’s passage through the galactic apocenter. 

 
3.2.2 Southern Far East Russia and adjacent regions 

Major tectonic reorganizations, changes of magmatism, 
sedimentation  and  significant  metamorphic  events 
occurred in this area in the Early-Middle Cretaceous, as 
elsewhere in the world (Fig. 3). The regional climate, 
however, did not change in the Cenomanian-Turonian as 
in many other regions of the world, but changed in the 
Albian (Krasilov, 1967; Markevich, 1995), closer to the 
suggested galactic event. This difference might be related 
to the considerable distance between Far Eastern Asia and 
the main volcanic provinces positioned in the intraoceanic 
regions. 

The major orogenic phase, that finally consolidated the 
Sikhote-Alin terranes, happened during the late Aptian – 
early Albian (115-110 Ma). This event is reflected in 
isotopic dating of mica from the Anyuy metamorphic 
dome  (Faure  et  al.,  1995;  Kruk  et  al.,  2014)  and 
hydrocarbon metasomatic rocks from the Dal’negorsk ore 
district (Baskina et al., 2006), that are close to the mid-
Cretaceous plate reorganization in both the Pacific and 
more globally (Matthews et al., 2012; Vaughan, 1995).  

The magmatic activity (K-Ar age = 134.4 ±1.0 Ma; 
Prikhod’ko et al., 2009) started with volcanic eruptions of 
the diamond-bearing meymechite-picrite complex (Ivanov 
et al., 2005; Oktyabr’skii et al., 2010; Prikhod’ko and 
Petukhova, 2011; Shcheka et al., 2006) that continued 
from the Jurassic and was followed by mid-Cretaceous 
plume-related intrusive activity (U-Pb zircon ages = 149-
161 and 96-98 Ma; samples 26, 28, and 32; http://test-
wms.vsegei.ru/geochron_atlas/, in Russian). This was 
accompanied by S-type collisional granites (Valanginian-
Hauterivian)  containing  methane-rich  fluid  inclusions 
(Berdnikov and Karsakov, 1999) and then transitional S- 
and I-type granites of unclear (transformed?) geodynamic 
nature (Kruk et al., 2014). This unusual magmatic suite 
was  replaced  by  Upper  Cretaceous  subduction-related 
volcanics forming the East  Sikhote-Alin Belt  and the 
Alchan zone and associated granitic intrusions (geological 
processes in the lithospheric plates subduction, collision, 
and slide environments, 2014; Jahn et al., 2015).  

Recently, some adakitic rocks have been identified to 
the west of the East Sikhote-Alin volcanic belt (Chashchin 
et al., 2014; Sakhno et al., 2011; Wu et al., 2017). These 
rocks  occurred  at  the  northeastern  edge  of  a  huge 
magmatic province occupying almost all of the East Asian 
territory (Fig. 4). This province, which is comparable with 
known Large Igneous Provinces in terms of at least size 
and shape, started forming at 190 Ma and terminated at 80 
Ma with its culmination in the early Cretaceous (Davis, 
2003; Wu et al., 2005). Its origin is obscure: nothing 
similar is known in the modern world, where adakitic 
complexes  have  a  localized  distribution  in  areas  of 
intensive  interaction  between  oceanic  slabs,  mantle 
wedges and continental crust associated with anomalous 
subduction  and/or  post-collisional  continental 
environments (Castillo, 2012). It should be noted that 
similar tonalite–trondhjemite–granodiorite and sanukitoid 
suites were relatively common in the Archean, before later 
styles of subduction were developed (Martin et al., 2005) 
or occurred in an unusual short-term form (Moyen and van 
Hunen, 2012).  

Several  geodynamic models  have been proposed to 
explain the phenomenon of the Early Cretaceous adakitic 
rocks of East Asia. Most of these suggest partial melting 
of either lower mafic continental crust that was thickened, 
underplated  and  delaminated  or  subducted  slab  with 
windows  and  mantle  diapirs  ascending  through  them 
(Davis, 2003; Ishihara and Chappell, 2008; Ji et al., 2007; 
Kiji  et  al.,  2000;  Liu  et  al.,  2012;  Sui  et  al.,  2007; 
Takahashi et al., 2005; Tsuchiya et al., 2007; Wang et al., 
2006a, 2006b, 2007; Wee and Park, 2009; Wee et al., 
2007; Wu et al., 2005; Xu et al., 2012; Yang and Zhang, 
2012; Zhang et al., 2004, 2006, 2010). All of the models 
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are based on a limited knowledge of the Jurassic-Lower 
Cretaceous adakitic rocks in the region. Recent data (Wu 
et al., 2017) and its compilation (Fig. 4) shows that this 
province extends over very different geological terrains, 
namely  the  Sino-Korean  Craton  and  Dabie-Sulu 
Collisional Belt, as well as the Sikhote-Alin, Khanka, 
Bureya, Jiamusi and other blocks of the eastern Central-
Asian Fold Belt that are characterized by continental crust 
of highly variable thickness, structure and composition 
(Parfenov et al.,  2010). It is difficult to imagine that 
continental crust was thickened enough throughout this 

geologically  heterogeneous  territory  to  provide  such 
widely-distributed  adakitic  melts.  Moreover,  many 
adakitic  rocks  of  the  province  have  isotopic  and 
geochemical affinities related to subduction of the oceanic 
lithosphere  and/or  associated  basaltic  underplating  of 
continental lithosphere (Chen et al.,  2013; Wu et al., 
2017). Alternatively, a super plume could provide a heat 
source for submelting of such a voluminous geological 
body.  Notably,  the  previously-mentioned  meimechite-
picrite complex may be considered as direct evidence of 
such  plume-related  activity.  Further  evidence  that  is 

 

Fig. 4. Late Jurassic-Early Cretaceous paleoreconstruction of East Asia. 
After Parfenov et al. (2010) with some additions from Isozaki et al. (2010) and Maruyama et al. (1997)) showing the 
Mesozoic (80-190 Ma) adakitic rock locations (Berzina et al., 2012; Davis 2003; Gonevchuk et al., 1999; Ishihara and 
Chappell 2008; Ji et al., 2007; Kiji et al., 2000; Liu et al., 2012; Sakhno et al., 2011; Sorokin et al., 2012; Sui et al., 2007; 
Takahashi et al., 2005; Tsuchiya et al., 2007; Wang et al., 2006a, 2000b, 2007; Wee and Park, 2009; Wee et al., 2007; Wu et 
al., 2005; Wu et al., 2016; Xu et al., 2012; Yang and Zhang, 2012; Zhang et al., 2004, 2006, 2010).  
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suggestive of  a  plume/rift  presence are the  numerous 
sedimentary basins distributed throughout East Asia in the 
Cretaceous  (Okada,  1999).  The  following  model  is 
suggested here in order to explain the East Asian Large 
‘Adakitic’ Province (Fig. 5).  

A super plume rising from the boundary between the 
mantle and outer core (Larson, 1991), arrived below an 
oceanic slab,  flattening its  subduction profile  under  a 
voluminous region (thousands of kilometers across) of the 
East Asian continental margin for tens of millions of years 
in the Jurassic and especially during the early-middle 
Cretaceous.  Numerous  slab  windows,  developed  via 
lateral extension above the plume, could provide heat 
flows  ascending  through  the  slab,  thus  generating 
magmatic intrusions and fluid flows. A combination of 
partial melts in the upper slab, a thinned mantle wedge and 
lower crust, produced a complex suite of arc-type adakites, 
normal subduction-related rocks (volcanics and granites) 
and continental-type adakites accordingly. Some plume-
related rocks, like those belonging to the meymechite-
picrite  complex  of  Sikhote-Alin  (Prikhod’ko  and 
Petukhova, 2011; Prikhod’ko et al., 2009; Shcheka et al., 
2006) also formed a part of this suite.  

This model does not conflict with other processes that 
connect  adakites  with  melts  derived  from downgoing 
oceanic  slabs,  or  over  thickened  continental  crust,  or 
underplated and delaminated crust. It merely presents a 
general scenario that may include all of these mechanisms. 
Such a scenario is not common in present-day tectonic 
settings, although a localised interaction of plume and 
subduction, though less flat in style, has recently been 
discovered with the help of seismic tomography in the 
northern Tonga Arc (Chang et al., 2016). These Tongan 
arc adakites take part in the assemblage of subduction-
related rocks (Faloon et al., 2008). The above examples 

most  likely  indicate  that  a  specific  interrelationship 
between super plumes, subducted slabs, mantle wedges 
and continental crust was involved in the Cretaceous phase 
of geological evolution, caused by turbulence in Earth’s 
liquid  core.  Abundant  slab  avalanches  could  also  be 
associated with these processes (Nance et al., 2014).  

Sedimentation  differed  in  the  northeastern  and 
southwestern parts of the Far Eastern Russian region. Coal
-bearing  sediments  comprise  parts  of  the  Alchan, 
Razdol’naya, and Partizansk basins in the southern and 
western areas. A major evolutionary change in the Albian 
began when continental deposits replaced shallow-marine 
sediments  in  this  region  (Golozoubov  et  al.,  2006; 
Krasilov, 1967; Markevich et al., 2000; Markevich, 1995; 
Oleynikov et al., 1990; Podolyan et al., 1997; Sharudo, 
1972; Simanenko et al., 2006; Volynets, 2009). In the east 
and north, thick units of terrigenous marine sediments 
accumulated in the Early Cretaceous. They formed in a 
deep-sea  basin  partly  (in  the  south  and  southeast) 
separated from the ocean by a volcanic arc (Khanchuk et 
al., 2016; Nechaev et al., 1999). This basin was closed in 
the  mid-Cretaceous,  while  its  sedimentary  units  were 
accreted onto the continent. After this, the newly-formed 
fold belt was covered by subduction-related volcanics.  

The Early and middle Cretaceous fluid flows from 
Earth’s mantle were likely agents for the formation of 
numerous  hydrothermal  mineral  deposits.  In  Far  East 
Russia, they include base-, precious-, and rare-metal ores 
associated with granites and adakitic rocks (see Fig. 3 
showing ore deposit frequency in NE China after Ouyang 
et  al.,  2013).  In  addition,  large  coal  and  petroleum 
resources appeared (Nechaev et al., 2015; Podolyan et al., 
1997). Fig. 6 presents the scheme of the fold-and-thrust 
structures associated with the oil and gas occurrences in 
Primorye. These structures were formed largely during the 
Cretaceous phase of geological evolution. 

 
4 Conclusions 

 
Data is presented here as evidence that the Cretaceous 

time in Far East Russia and throughout the world was 
characterized  by  diverse  magmatic,  tectonic  and 
sedimentary processes and events, many of which seem 
atypical of many ‘normal’ plate-tectonic settings. Because 
of  this,  the  Far  Eastern  Russian  region  in  the  Early 
Cretaceous is commonly interpreted as a transform plate 
boundary whose characteristics are not distinct (Khanchuk 
et al., 1996, 2016; Geological processes in lithospheric 
plate subduction, collision, and slide environments, 2014; 
and  others).  The  presented  ‘galactic’  interpretation  of 
geological evolution can provide fresh insights into this 
period of Earth’s history.  

 

Fig.  5.  Cartoon  illustrating  the  super  plume-subduction 
relationship  producing  the  East  Asian  Large  Adakitic 
Province.  
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All  of  the  major  processes  during  the  described 
Cretaceous  turn  may  be  interpreted  as  transitional 
processes, related to a changing state of Earth, especially 
in its outer core. Here, its liquid nature is liable to react to 
the gravitational and electromagnetic transformations in 
the most dramatic manner. When the space changes came 
at 135-120 Ma, the turbulent flows in the outer core 

triggered  voluminous  ascending  magmatic  plumes 
associated  with  fluid  flows,  sufficient  in  volume  to 
significantly  transform the  mantle,  crust,  hydrosphere, 
biosphere and atmosphere. The plume-supported flattening 
and melting of the subducted slab materials could explain 
the initiation of numerous adakitic melts that formed the 
giant East Asian Adakitic Province. These and associated 

 

Fig. 6. Scheme of Mesozoic tectonics and sedimentary formations of Primorye showing evidence of oil and gas (after 
Nechaev et al., 2015).  
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juvenile events directly and indirectly produced numerous 
ore, coal, gas and oil deposits. This led to the Cretaceous 
time  being  one  of  the  most  commercially  significant 
periods of geological history. 
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