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Abstract Zircon megacrysts (± gem corundum) appear in
basalt fields of Indo-Pacific origin over a 12,000 km zone
(ZIP) along West Pacific continental margins. Age-dating,
trace element, oxygen and hafnium isotope studies on repre-
sentative zircons (East Australia–Asia) indicate diverse mag-
matic sources. The U–Pb (249 to 1 Ma) and zircon fission
track (ZFT) ages (65 to 1 Ma) suggest thermal annealing dur-
ing later basalt transport, with<1 to 203 Ma gaps between the
U–Pb and ZFT ages. Magmatic growth zonation and Zr/Hf
ratios (0.01–0.02) suggest alkaline magmatic sources, while
Ti—in—zircon thermometry suggests that most zircons crys-
tallized within ranges between 550 and 830 °C. Chondrite-
normalised multi-element plots show variable enrichment pat-
terns, mostly without marked Eu depletion, indicating little
plagioclase fractionation in source melts. Key elements and

ratios matched against zircons from magmatic rocks suggest a
range of ultramafic to felsic source melts. Zircon O-isotope
ratios (δ18O in the range 4 to 11‰) and initial Hf isotope ratios
(εHf in the range +2 to +14) encompass ranges for both man-
tle and crustal melts. Calculated DepletedMantle (TDM0.03–
0.56 Ga) and Crustal Residence (0.20–1.02 Ga) model ages
suggest several mantle events, continental break-ups
(Rodinia and Gondwana) and convergent margin colli-
sions left imprints in the zircon source melts. East
Australian ZIP sites reflect prolonged intraplate
magmatism (~85 Ma), often during times of fast-
migrating lithosphere. In contrast, East Asian-Russian
ZIP sites reflect later basaltic magmatism (<40 Ma), of-
ten linked to episodes of back-arc rifting and spreading,
slow-migrating lithosphere and slab subduction.
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Introduction

Large gem-quality zircons commonly accompany sapphire ±
ruby in many placer and volcanoclastic deposits that were
derived from alkali basalt volcanic fields (Gübelin 1982;
Groat 2014). Crystals range in size up from macrocrysts
(0.5–1 cm) into megacrysts (>1 cm) and represent xenocrysts
entrained in basaltic magmas during their ascent, before ero-
sional dispersal and concentration in placers (Tietz and
Büchner 2007; Seifert et al. 2008, 2012; Abduriyim et al.
2012). The gem corundum receives preferential study because
of its greater commercial value (Shor and Weldon 2009),
while the zircon provides considerable geochronologic and
geochemical data related to its genesis, as does zircon includ-
ed in corundum (Guo et al. 1996a, b; Sutherland et al. 2002a,
b, 2015; Siebel et al. 2009; Izokh et al. 2010; Seifert et al.
2012). In some deposits zircon megacrysts predominate over
corundum and even become the mining target, as in the
Ratanakiri deposits, Cambodia, where zircon yields effective
heat-treatment color changes (Smith and Balmer 2009;
Wittwer et al. 2013). Only rare zircon ± corundum-bearing
xenoliths or outcrops indicate likely source rocks (Coenraads
et al. 1995; Pisutha-Arnond et al. 1998; Upton et al. 1999;
Monchoux et al. 2006; Schmitt 2006; Giuliani et al. 2009;
Paquette and Mergoil-Daniel 2009). Zircons included in co-
rundum (Sutherland et al. 2015) form a geochemical subset
within the larger zircon megacryst story and are not dealt with
in detail in this study.

Zircon megacryst suites represent magmatic and some
metamorphic processes (Hinton and Upton 1991; Sutherland
and Fanning 2001; Garnier et al. 2005; Izokh et al. 2010;
Khamloet et al. 2014) and include ‘kimberlitic’ type zircons
(Corfu et al. 2003; Simonetti and Neal 2010). They represent a
diverse range of crystallizations, when matched against zircon
classification and regression trees (CART; Belousova et al.
2002). Distinction of magmatic zircons relies on crystal mor-
phology, oscillatory zoning and otherwise non-recrystallized
textures, rare earth element (REE) data or preserved high Th/
U ratios (e.g. zircon groups in a North China granulitic
xenolith suite, Liu et al. 2004). Igneous zircons commonly
have Th/U>0.5 (Hoskin and Schaltegger 2003; Zheng et al.
2005b), although ratios depend on co-crystallising phases and
can develop values < 0.5 (Kirkland et al. 2014). Zircons
formed in magmas where feldspar, particularly plagioclase,
crystallized tend to develop negative Eu anomalies (Hinton
and Upton 1991), while those grown in plagioclase-poor sys-
tems or at pressures above plagioclase stability lack noticeable
Eu depletion (Sutherland 1996; Siebel et al. 2009).

Precise dating of zircon utilises several U-Th-Pb isotopic
methods (Hanchar and Hoskin 2003). Methods employed in
previous studies on zircon megacrysts from western Pacific
margin basalt fields include isotope dilution-thermal
ionisation mass spectrometry (ID-TIMS), secondary ion

mass-spectrometry (SIMS), including sensitive high res-
olution ion microprobe (SHRIMP) methods, laser
ablation-inductively coupled plasma-mass spectrometry
(LA-ICP-MS) and fission track (FT) techniques
(Graham et al. 2008). Very young zircons (<1 Ma) can
be dated using high-spatial-resolution (230Th/ 238U) dis-
equilibrium dating, SHRIMP, or multi-collector LA-MC-
ICP-MS analysis. The Th/U ratios of the hosts, howev-
er, need to be known or estimated, to allow accurate U–
Th disequilibrium calculations (Schmitt 2006; Cocherie
et al. 2009). This is an important limiting factor for
very young megacryst zircons divorced from their
sources (Sutherland et al. 2014, 2015), as in this study.

Zircon/corundum generation in the lithosphere is complex
and studies involve mineral, melt and fluid inclusions, oxygen
isotope ratios and chronologic investigations (Upton et al.
1999, 2009; Limtrakun et al. 2001; Yui et al. 2003, 2006;
Giuliani et al. 2005; Garnier et al. 2005; Graham et al.
2008). A few analogues for zircon/ corundum megacryst
sources include a monzonite dyke in Late Precambrian
gneisses in Kenya (Simonet et al. 2004), nepheline-bearing
gneisses in Malawi (Ashwal et al. 2007), Cretaceous albititic
dykes in uplifted mantle peridotites in the French Pyrenees
(Monchoux et al. 2006; Pin et al. 2006) and syenitic xenoliths
in Paleogene-Neogene volcanic centres, Massif Central,
France (Giuliani et al. 2009; Paquette and Mergoil-Daniel
2009).

The zircon ± corundum/basalt megacryst association
reaches its greatest regional expression within the intraplate
basaltic belts along the western Pacific continental margins in
eastern Australasia, Asia and Russia (Vysotskii et al. 2002,
2015; Graham et al. 2008; Sutherland and Meffre 2009;
Nechaev et al. 2009; Izokh et al. 2010; Yu et al. 2010;
Abduriyim et al. 2012; Khamloet et al. 2014). This 12,
000 km long zircon megacryst Indo-Pacific zone (Fig. 1) has
no comparable counterpart elsewhere and is given the acro-
nym ZIP. Some ZIP host basalts involve deeper mantle gen-
erations of alkaline basaltic magmas and can intersect a range
of pre-existing gem-bearing sialic igneous and metamorphic
bodies (He et al. 2011; Khamloet et al. 2014).

To further study these zircon megacryst suites, new de-
tailed textural, geochronological and geochemical data are
given from six representative ZIP sites (between 42° S and
45° N; East Australia, South-East Asia, East Russia). The data
will augment previous scattered studies on other ZIP sites
(Figs. 1, 2 and 3). This study aims to:

1. Define the ZIP zone in terms of its zircon characteristics,
geological settings and tectonic events.

2. Describe internal textures of zircons to illustrate their
growth characteristics.

3. Utilise a range of age-dating, trace element and isotopic
analytical techniques to define the crystallization and
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resetting ages, chemical affinities and isotopic variations
within the zircons.

4. Appraise the zircon geochemistry in relation to potential
source rocks.

5. Integrate and co-ordinate new and previous zircon
megacryst data to model ZIP genesis.

6. Consider the implications of the ZIP model in terms of its
lithospheric and geodynamic contexts.

7. Outline further studies needed to test proposed Zircon Zip
models.

Geological setting

The ZIP intraplate basalts were erupted through late
Precambrian to early Cenozoic rifted blocks, fold belt terranes
and less-deformed late Paleozoic to Cenozoic sedimentary
cover (Scheibner 1999; Khanchuk 2001; Yu et al. 2010;
Barr and Cooper 2013). The underlying terranes trend roughly
north–south in eastern Australia (Veevers 2001) and in SE
Asia they flank the Indochina cratonic block and converge
in a trend northwards (Hoang and Flower 1998; Metcalfe
1999). The intervening region is largely disrupted by the
Melanesian-Indonesian arc and strike-slip systems (Hall and
Spakman 2003). In eastern China, deep-faulted tectonic

Fig. 1 Map showing the distribution of zircon megacryst locations (the
‘ZirconZip’), West Pacific continental margins (1 =Otago, New Zealand;
2 =Weldborough, NE Tasmania; 3 = eastern Victoria; 4 = central-west
Victoria; 5 = Tumbarumba, NSW; 6 =Oberon, NSW; 7 =Wellington,
NSW; 8 =western Blue Mountains, NSW; 9 =Barrington Tops, NSW;
10 = Yarrowitch, NSW; 11 = Main Range, QLD; 12 = Bunya
Mountains, QLD; 13 = Anakie, QLD; 14 = Nebo Province, QLD;
15 = Chudleigh, QLD; 16 =McBride Province, QLD; 17 =McLean
Province, QLD; 18 = SE Kalimantan; 19 = Central Kalimantan;
20 = South Vietnam; 21 = Cambodia; 22 = Chanthanburi-Trat region,
Thailand; 23 = Bo Ploi region, Thailand; 24 = Denchai, Thailand;
25= Laos; 26=Hainan Island, China; 27 =Changle, China; 28= eastern
China; 29 = northern China; 30 = southern Primorye, Russia;
31 = northern Primorye, Russia; 32 = Sovgavan Plateau, Russia;
33=Myanmar; 34 =Malaita, Solomon Islands)

Fig. 2 Map of eastern Australia showing distribution of main zircon
megacryst locations in relation to the intraplate Cenozoic basalt fields
of eastern Australia. Adapted from Graham et al. (2008)

Major zircon megacryst suites of the West Pacific margins
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blocks partly control the basaltic emplacements and zircon
megacryst characteristics (Zou et al. 2000; Qiu et al. 2005,
2007). In north-eastern Asia, the Mesozoic-Cenozoic fold belt
and fault systems are largely north-easterly/south-westerly in
strike and include rift-related basalt fields (Okamura et al.
2005).

The ZIP sites are flanked to the east by extinct marginal
spreading basins and subsidiary offset rifts that formed behind
the western Pacific island arc-subduction systems (Miller et al.
2006). These include the Late Cretaceous-Early Cenozoic
Tasman-Coral Sea spreading basins (Gaina et al. 1998;
Crawford et al. 2003; Sutherland et al. 2012) and the
Neogene South China Sea and Japan Sea spreading basins
(Itoh et al. 2006; Sun et al. 2009). These basins involved
thermal rifting (e.g. the 100 to 60 Ma Tasman-Cato-Coral
Sea margins; Moore et al. 1986; Marshallsea et al. 2000).
Such rifts could provide a quasi-continuous source of sub-
lithospheric melting that promoted zircon and corundum
crystallising events among prolonged basaltic pulses
(Sutherland 1996; Sutherland and Fanning 2001; Sutherland
2003).

In eastern Australia, the ZIP zone follows the north–south
Indian-Pacific asthenospheric mantle boundary, which is
reflected in the basalt field MORB-type isotopic signatures
(Zhang et al. 1999; Sutherland 2003). In the southmost sec-
tion, ZIP basalt fields include HIMU OIB-type isotopic sig-
natures (Khin Zaw et al. 2006; Sutherland and Meffre 2009).
The eastern Asian ZIPmargin includes rift-related basalts with
both lithospheric and asthenospheric geochemical signatures
and isotopic changes have been attributed to different under-
lying domains and their interactions (Mukasa et al. 1996;

Hoang and Flower 1998; Zou et al. 2000; Okamura et al.
2005; Zheng et al. 2005a). The basalts generally exhibit
Gondwanan Indian Ocean mantle signatures, without much
evidence of Pacific mantle input.

The ZIP basalts lie within dynamic tectonic settings along
the western Pacific margin in which plate motions are carrying
continental and former sea-floor lithosphere over zones of hot
upwelling asthenosphere (Electron Appendix 1). Along the
northern Asia-Russia margin, this setting includes intervening
colder regions under extinct late Cenozoic spreading floors
and areas where slabs are descending from proximal active
subduction along the Japanese arc.

Zircon sampling sites

The studied zircon sites (Table 1) are described in terms of
local geology and literature in Electronic Appendix 2 and are
only outlined here.

Eastern Australia

The study sites (Fig. 2) include the southern Weldborough
field (147.9° E, 41.2° S), NE Tasmania, ~ 140 km west of
the Tasman Sea spreading floor, the central Yarrowitch
(152.0° E, 31.3° S) and Riamukka, New South Wales fields,
~ 150 to 180 km west of the Tasman floor and the northern
Mount McLean field (144.8° E, 15.8° S), NE Queensland, ~
500 km southwest of the Coral Sea spreading floor. Other
zircon megacryst sites provide extensive comparative data
on crystal morphology, fission track and U–Pb geochronolo-
gy, trace element geochemistry and oxygen and hafnium iso-
tope results (Hollis and Sutherland 1985; Sutherland 1996;
Worden et al. 1996; Sutherland et al. 1998, 2014, 2015;
Sutherland and Fanning 2001; Birch et al. 2007; Abduriyim
et al. 2012; Kennedy et al. 2014).

South-East Asia

The study sites (Fig. 3) lie within complex tectonic mineral-
ized basement terranes (Khin Zaw et al. 2014). They include a
southern Vietnam and a northern Laos field. The Dak Nong
(Gia Nghia), southern Vietnam field (106.8° E, 12.1° N)
lies ~ 350 km northwest of the South China Sea spreading
floor. The Ban Huai Sai, Laos field (100.2° E, 22.3° N)
lies~1800 km northwest of that floor. The basalts range be-
tween 0 and 18Ma in age, include Qz and Ne-normative types
and zircon + corundum hosts largely appear in the younger
basalts (Hoang and Flower 1998; Sutherland et al. 2002b;
Garnier et al. 2005). The basalts mostly ascended along rift
structures, bounded by strike-slip faults, within Archaean to
Palaeozoic terranes, flanked by Mesozoic sedimentary and
volcanic sequences (Lan et al. 2001).

Fig. 3 Map of central, eastern and SE Asia showing distribution of main
zircon megacryst locations in relation to intraplate Cenozoic basalt fields,
with zircon-corundum placer deposits (open stars) and hard rock-hosted
corundum-zircon deposits (closed stars). Adapted and modified from
Graham et al. (2008)

L. Sutherland et al.

Author's personal copy



Table 1 Investigated zircon megacrysts, procedures and sample sources

Locality Description Procedure Sample source

East Australia

WRT Z1 Weldbrough, Weld River, NE
Tas

Moderately rounded, polished; equant
to prismatic; white, pink, yellow,
red brown grains; 3-8 mm

ICP-MSa

U-Pba,
F.T.b,c

Alluvial sample, Australian Museum collection

YAR Z1 S. Fenwicks Creek, Yarrowitch,
NSW

Anhedral; polished, corroded; equant;
pale (white, pink, brown, yellow)
grains; 2–7 mm

F.T.a Palaeoalluvial bed, AM collection

YAR Z2 As above Angular to rounded; corroded; amber-
yellow grains

F.T.a Alluvial sample, AM collection

YAR Z3 As above Angular to rounded; well-polished;
orange-red grains

F.T.a As above

YAR Z4 As above Angular to well-rounded; polished;
deep-red grains

F.T.a As above

YAR Z5a As above Subhedral to euhedral; equant to
prismatic; orange-brown grains

ICP-MSa

U-Pba
As above

YAR Z5b As above Small; complex equant; white grains ICP-MSa

U-Pba
As above

YAR Z5c As above Subhedral; resorbed, highly polished;
equant, deep-red grains

ICP-MSa

U-Pba
As above

YAR Z5d As above Subhedral; part-resorbed pink grains ICP-MSa

U-Pba
As above

YAR Z6 As above Subhedral; resorbed; equant; pink,
yellow, blue-green, brown-green
grains

EMPa As above

YAR Z6 As above Subhedral; resorbed; equant; pink,
yellow, blue-green, brown-green
grains

EMPa As above

D53800 As above Megacrysts, pink, yellow, green EMPa

δ18Oa
As above

D53795 Riamukka, NSW Zircon-magnetite composite ICP-MSa

δ18Oa
Alluvial sample AM collection

MML Z NW Mt McLean cone, Qld. Subhedral to rounded; equant to
ovoid; clear, yellow-grey, red-
brown grains

F.T.a Eluvial sample, AM collection

MML Z1 As above Anhedral to rounded; highly polished
ovoid; glassy clear grains; 1.5-
7 mm

U-Pba

ICP-MSa
As above

East Asia

D53796 Khao Wua Zircon-magnetite-sapphire xenolith δ18Oa

EMPd

U-Pbe

Alluvial sample AM collection

BHSL Z1 2 km W. Ban Huai Sai town,
Laos

Anhedral to subhedral; corroded
equant to sub-prismatic; red-brown
grains; 3–6 mm.

F.T.a Alluvial sample, AM collection

BHSL Z2 As above Most euhedral grains from sample
BHSL Z1

U-Pba

ICP-MSa
As above

GNV Z1 Gia Nghia, Dak Nong, Vietnam Rounded to subhedral; corroded;
glassy clear grains; 7–23 (av.15)
mm

F.T.a Alluvial sample, AM collection

GNV Z2 As above Rounded to subhedral; corroded Fe
oxide-stained, glassy clear grains

F.T.a As above

GNV Z3 As above Rounded to subhedral; corroded;
glassy brown grains

F.T.a As above

GNV Z4 As above Euhedral; prismatic; glassy clear
grains

U-Pba

ICP-MSa
As above

East Russia

PBV Z1a Podgelbanochny Creek
Primoré, East Russia

Subhedral; resorbed; equant to sub-
prismatic; lustrous orange-brown
grains; 0.5–5 mm

F.T.1,
U-Pba

ICP-MSa

Alluvial sample, AM collection

PBV Z1b As above Subhedral; pitted; equant to sub-
prismatic; lustrous brown grains

As above As above

Major zircon megacryst suites of the West Pacific margins
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Zircon megacrysts from the adjacent Cambodian and
Thailand basalt fields include low-U types (between U 30
and 80 ppm) that give close knit U–Pb formation ages from
1 to 11Ma, always slightly older than their basalt hosts (Davis
and Barr 1995). The very low Th/U ratios of these zircons
were attributed by those authors to fluids generated from a
subducted slab.

Far eastern Russia

Zircons and sapphire megacrysts derived from Late Cenozoic
(16 to 3 Ma) basalt fields appear in placers in the Primore
region (Vysotskii et al. 2002; Khanchuk et al. 2003;
Chashchin et al. 2007; Graham et al. 2008). The zircons stud-
ied here (Fig. 3) came from the 11 to13 Ma Podgelbanochny
alkali basalt field (133.1° E, 43.3° N). Earlier crystal studies
and a U–Pb (SHRIMP) age (11.2 Ma) by Akinin et al. (2004)
and preliminary ZFT and O isotope results suggest a mantle
origin for the gem association (Nechaev et al. 2009). These
results are expanded here with further detailed FT and U-Pb
dating and geochemistry on Pogelbanochny zircons.

Analytical methods

Zircon grains were picked out from heavy mineral concen-
trates panned during field sampling at individual localities or
from well-documented material already present in the
Australian Museum collections (Table 1). Zircon from con-
centrates from Yarrowitch and Podgelbanochny were studied
for surface features by scanning electron microscopy (SEM)
photography using a LEO 435 VP SEM with Robinson back-
scattered electron detector and Everhart-Thomley SE second-
ary detector, at the Australian Museum (Fig. 4). Samples were
first reduced to<20 mm and gold sputter coated. Accelerating
voltage was 29 kVand working distance was 25mm. Polished
zircons from all localities (Table 1) were then documented
prior to analysis by reflected and transmitted light

photomicroscopy and cathodoluminescence (CL) and back
scattered electron (BSE) imaging on a Hitachi S-2250 N
(SEM), Research School of Earth Sciences, Australian
National University, Canberra (Electronic Appendix 3).
Zircons were then embedded in mounts and polished, for an-
alytical runs together with appropriate standards.

Geochronology

Zircon grains from each site were dated by fission track and
U-Pb isotope methods (Electronic Appendix 4). The zircon

Table 1 (continued)

Locality Description Procedure Sample source

PBV Z1c As above As above, but pale grains As above

PBV Z1d As above Anhedral to subhedral; partly
resorbed; minute; clear grains

F.T.a

F.T. dating, Geotrack International, Melbourne, Vic; U-Pb dating, SHRIMP facility, LA-ICP-MS Australian National University, Canberra, ACT; EMP
analyses, University of Western Sydney, NSW
aThis paper
b Yim et al. (1985)
c Khin Zaw et al. (2006)
d Coenraads et al. (1995)
e Sutherland et al. (1998)

Fig. 4 Zircon megacryst morphology and growth features. a typical
zircon megacrysts, up to 5 mm in size, Yarrowitch, NSW b SEM image
of corroded zircon with scour features, due to magma transport,
Podgelbanochny, Primorye c SEM image of Podgelbanochny zircon
megacryst with surface ‘pimpling’ d CL image of zircon megacryst,
Yarrowitch, NSW with oscillatory growth zonation e CL image of
zircon megacryst, Ban Huai Sai with euhedral negative inclusions and
oscillatory growth zonation f CL image of zircon megacryst, Weld River
(older grain) with decompression fractures and micro-breccia zone
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FT results (Table 2) represent post-formation heating events
for these basalt-transported xenocrysts, as tracks become par-
tially annealed above 200–230 °C and usually annealed
completely above 750–900 °C (Yamada et al. 1995). The U-
Pb isotope results (Table 3), in comparison, are little affected
by potential Pb loss from diffusion between 900 and 1500 °C
and largely represent formation or re-crystallization ages, on
the basis of experiments using common Pb2+ (Cherniak and
Watson 2001). However, radiogenic lead which produces
smaller Pb4+ or Pb6+ions may promote faster diffusion and
lower closure temperatures. The smaller Pb4+ ion, however,
is more compatible with Zr, and diffusion is insignificant un-
less zircons became annealed at< 600–650 °C (Mezger and
Krongstad 2004). The age-dating procedures are described in
Electronic Appendix 4.

Geochemistry

Zircons from Yarrowitch were analysed for their main ele-
ments by electron microprobe (EMPA), while zircons from
all sites were analysed for trace elements by LA-ICP-MS.
Hafnium and lutetium isotopic compositions (Woodhead
et al. 2004) were analysed on most of the same grains that
provided the U–Pb ages. The O isotope determinations (δ18O)
were made on selected zircon megacrysts and zircon compos-
ites using facilities and ion microprobe techniques described

in Giuliani et al. (2000). Details of the analytical procedures
are described in Electronic Appendix 4.

Results

Zircon morphology and growth features

Details of the studied zircons (Electronic Appendix 3) are
discussed more generally here. Most zircons show mag-
matic corrosion on crystal faces and depending on its
degree the grains range from euhedral, through subhedral
to anhedral shapes (Fig. 4a). The 3-D SEM imaging of
Yarrowitch zircons reveals that many have extensive cor-
rosion, removing pre-existing crystal faces and producing
undulose and highly pitted surfaces (Fig. 4b). This leaves
finely etched, mostly spherical pits and a highly pimpled
surface (Fig. 4c). Even crystals with prominent faces still
show highly corroded or pitted surfaces (Fig.4d). Some
grains exhibit sharp angular, euhedral short negative crys-
tals (Fig. 4e), which may represent prismatic mineral
grains dissolved out by magmatic action. Similar strong
magmatic resorption is also evident in Podgelbanochny
zircons, in which crystals have prismatic and pyramidal
faces dominated by {101} forms with an elongation ratio
of about 1:2 (Akinin et al. 2004).

Table 2 Zircon Fission Track Analyses (ages in Ma)

Sample number Relative age group No. of grains Ns (av.) Ni (av.) Na (av.) U ppm (av.) RHOs (× 10n) RHOi (× 10n) F.T. Age ± error

YAR Z1-4 Old (low U) 6 182 126 137 96 2.322 × 106 2.882 × 106 65.3 ± 7.8

Old (high U) 6 208 122 183 183 2.435 × 106 1.673 × 106 57.7 ± 6.2

Intermediate 4 170 176 138 138 2.993 × 106 3.142 × 106 40.8 ± 4.6

Young 1 128 2598 300 754 6.780 × 105 1.376 × 107 2.1 ± 0.2

YAR Z1-4 Old 4 P (χ2) 8 %; Pooled age 62± 3 Ma

Old 10 P (χ2) 7–12 %; Pooled age 55 ± 3 Ma

Intermediate 2 P (χ2) 85 %; Pooled age 40± 3 Ma

TC1 11 3 69 76 56 6.447 × 104 1.532 × 106 2.7 ± 1.7

MML Z Old 1 6 11 100 6 9.534 × 104 1.748 × 105 38.3 ± 19.4

Intermediate 9 3 19 100 10 4.061 × 104 2.966 × 105 10.8 ± 7.2

Young 14 7 142 100 75 1.056 × 105 2.249 × 106 3.5 ± 2.2

GNV Z1-3 Young 20 1.4 5.3 100 47 2.225 × 104 8.346 × 105 1.1 ± 0.2

BHS Z1 Older (?) 11 28 263 100 211 4.383 × 105 4.172 × 106 4.3 ± 1.0

Younger (?) 6 11 180 100 158 1.430 × 105 2.655 × 106 2.4 ± 0.7

Combined 17 P (χ2) 0.7 %; Pooled age 3.8 ± 0.2 Ma

PBY Z1 One Group 57 202 185 94 4.875 × 105 1.735 × 106 12.1 ± 0.5

P (χ2) 87.7 %; Pooled age 12.1 ± 0.5 Ma

From Geotrack Reports for the Australian Museum, # 344 409 901. Analysts P.F. Green & I.R. Duddy. 1 Tobins Camp, Yarrowitch, Sutherland (1993).
Errors on ages 1-sigma and on pooled ages 2-sigma. Standards and induced track densities weremeasured on external detector faces, fossil track densities
on internal mineral surfaces. Ages were calculated using Zeta = 87.7 ± 0.8 for dosimeter glass U3. Ns, No. of spontaneous tracks. Ni, No. of induced
tracks. Na, area units of counted tracks. RHOs, spontaneous track density, RHOi, induced track density. RHOD, induced track density/cm2

(RHOD=9.619 × 10
5 for YAR Z1-4, GNV Z1-3, BHSL Z1, PBV Z1 and = 1.605 × 106 for MML Z)
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Table 3 SHRIMP U-Pb data for zircons

Grain spot % 206Pbc Uppm Thppm
232Th/238U 206Pb*ppm

206Pb*/238U ±% Total 206 Pb U/±% Total
206Pb

Pb/±% 206Pb/238U
Age (Ma) ±2σ

WRT Z1

1.1 0.15 58 26 0.46 1.96 0.0393 1.0 25.4 1.0 0.0524 2.3 249 3

2.1 0.08 542 473 0.90 3.34 0.0072 0.7 139.2 0.7 0.0476 1.5 46.1 0.4

3.1 0.25 26 6 0.25 0.93 0.0408 2.3 24.5 2.2 0.0534 2.6 258 9

4.1 0.06 56 19 0.34 1.86 0.0385 1.8 26.0 1.8 0.0516 1.8 244 6

YAR Z5a

1.1 0.55 388 318 0.85 4.03 0.0120 2.1 82.7 2.0 0.0519 4.7 77.1 2.3

2.1 0.61 179 111 0.64 1.50 0.0097 1.6 102.4 1.6 0.0521 5.8 62.3 1.4

3.1 1.02 286 194 0.70 2.35 0.0095 1.5 104.7 1.4 0.0553 4.9 60.6 1.3

4.1 – 211 173 0.85 1.80 0.0100 1.6 100.5 1.5 0.0466 5.7 63.9 1.4

5.1 – 66 30 0.46 0.59 0.0104 2.6 96.5 2.5 0.0422 10 66.9 2.4

6.1 1.06 96 49 0.52 0.78 0.0094 2.3 105.2 2.2 0.0556 8.7 60.4 2.0

YAR Z5b

1.1 −0.18 710 879 1.28 6.06 0.0100 1.5 100.6 1.5 0.0458 2.9 63.9 1.3

2.1 0.51 168 137 0.85 1.42 0.0098 2.2 101.5 2.2 0.0513 5.8 62.9 1.4

YAR Z5c

1.1 0.16 632 879 1.44 5.35 0.0098 1.3 101.4 1.3 0.0486 3.1 63.2 1.2

1.2 0.31 279 222 0.82 2.38 0.0099 2.0 100.8 2.0 0.0498 4.3 63.4 1.3

2.1 0.23 312 377 1.25 2.61 0.0097 1.8 102.7 1.8 0.0491 4.5 62.4 1.8

YAR Z5d

1.1 0.28 284 289 1.05 2.51 0.0103 1.1 97.0 1.1 0.0495 2.4 65.9 1.0

1.2 0.81 86 40 0.48 0.76 0.0102 1.5 97.2 1.5 0.0537 4.1 65.5 1.4

MML Z1

2.1 5.38 17 4 0.23 0.051 0.0034 11.2 277.1 10.0 0.0890 42.0 22.0 3.5

3.1 4.27 19 5 0.26 0.062 0.0037 5.2 255.7 4.7 0.0803 20.7 24.1 1.8

4.1 1.91 30 6 0.22 0.099 0.0038 8.3 258.3 8.0 0.0616 25.5 24.4 2.8

4.2 −1.20 26 6 0.23 0.101 0.0046 7.7 221.6 7.5 0.0371 34.7 29.4 3.3

BHSL Z4

1.1 2.16 103 50 0.50 0.054 0.0006 4.1 1649.6 3.9 0.0632 14.3 3.8 0.23

1.2 1.98 68 26 0.40 0.033 0.0006 5.6 1751.2 5.2 0.0617 24.7 3.6 0.28

2.1 3.39 310 268 0.90 0.135 0.0005 3.6 1967.6 3.5 0.0729 8.4 3.2 0.21

2.2 6.03 105 46 0.45 0.053 0.0006 4.3 1694.1 3.9 0.0937 12.4 3.6 0.21

3.1 0.35 292 154 0.55 0.168 0.0007 2.4 1497.9 2.3 0.0489 10.5 4.2 0.16

3.2 2.03 196 97 0.51 0.112 0.0006 3.0 1501.2 2.8 0.0622 11.4 4.0 0.18

GNV Z4

3.1 34.40 85 47 0.57 0.010 0.0001 13.3 7035 6 0.3177 15.7 0.6 0.11

3.2 24.89 70 38 0.56 0.011 0.0001 9.2 5580 5 0.2426 14.8 0.9 0.11

4.1 84.57 27 11 0.42 0.005 0.0000 95 4395 6 0.7138 11.0 0.2 0.22

PBV Z1a

3.1 0.62 791 1378 1.80 1.18 0.0017 2.0 577.7 2.0 0.0512 6.9 11.1 0.31

4.1 – 193 181 0.97 0.31 0.0019 3.4 540.1 3.2 0.0419 19.4 12.0 0.60

4.2 0.61 267 300 1.16 0.46 0.0020 3.0 502.2 2.9 0.0511 13.3 12.7 0.50

PBV Z1b

1.1 2.67 131 158 1.24 0.21 0.0018 3.3 549.8 3.0 0.0674 14.9 11.4 0.37

2.1 0.74 98 112 1.19 0.14 0.0017 4.2 600.9 3.8 0.0521 27.6 10.6 0.44

3.1 4.83 79 84 1.11 0.13 0.0019 4.4 513.5 3.8 0.0844 17.9 11.9 0.52

PBV Z1c

1.1 – 63 59 0.96 0.096 0.0018 4.9 568.0 4.8 0.0297 26.8 11.6 0.79

L. Sutherland et al.
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The CL imaging shows that most analysed grains have
magmatic growth zoning, as coarser to finer oscillatory zones
and sector zones (Fig. 4d–f, best seen in Fig.4d). They gener-
ally lack inherited cores or metamorphic or hydrothermal rims
found in zircons from metamorphosed igneous-sedimentary
complexes (Maidment et al. 2005).

Geochronology

Fission track dating

Results (Table 2) indicate multiple thermal annealing events in
some zircon suites, mostly Australian. Previous data on
Weldborough zircons indicated a resetting event at 46–
47Ma (Khin Zaw et al. 2006). The Yarrowitch results suggest
resetting events of 63±3 age zircons at ~55 and 40 Ma, and
possibly 2–3 Ma (similar to the nearby Tobins Camp event;
Sutherland 1993). Mount McLean suggests two main reset-
ting events at ~11 and 4 Ma involving 22–29Ma zircons. The
new FT data further supports scenarios of repeated thermal
transport of zircons during eruptive episodes within
Australian volcanic basalt fields (Sutherland and Fanning
2001).

The Asian-Russian FT ages are younger than most
Australian FT ranges and indicate thermal transport ages close
to the zircon formation ages of ~1Ma at Ghia Nghia, ~3–4Ma
at Ban Hui Sai and ~12 Ma at Podgelbanochny. The U con-
tents in zircons in the FT analysis show low av. U (<60 ppm)
for the Mount McLean, Tobins Camp and Gia Nghia suites
and moderately high av. U ( >90 ppm) in the other suites.

U –Pb dating

The SHRIMP II data (Table 3; Figs. 5 a–f) show that
Weldborough (WRT Z1) includes older zircons (249±5 Ma)
with relatively low U (26–58 ppm), Th (6–26 ppm) and Th/U
(0.25–0.46) and younger zircons (46±1 Ma) much higher in
U (542 ppm), Th (473 ppm) and Th/U (0.90). The older age is
typical of manyWeldborough zircons on the basis of previous

SHRIMP I dating (290±25 to 208±10 Ma; Khin Zaw et al.
2006). The younger geochemically distinct zircon has a U–Pb
age closely related to the basaltic resetting event at 46–47 Ma.

Yarrowitch zircons (YAR Z5a–d) suggest multiple forma-
tion ages. A zircon with higher U (388 ppm), Th (318 ppm)
and Th/U (0.85) gave the oldest age (77±2 Ma) age. Zircons
with lower U (<300 ppm), Th (<200 ppm) and Th/U (0.46–
0.85) gave a spread of ages (67±2 – 60±1 Ma) and overlap
with a SHRIMP formation age of 66±2 Ma found for young
reset zircons in the area with a FT age of~ 3 Ma (Sutherland
1993).MountMcLean zircons (MMLZ1) range from 24±2.0
to 22.0±3.5 Ma, but the ages are within uncertainty of each
other. These low U (17–30 ppm), Th (4–6 ppm) and Th/U
(0.22–0.26) zircons clearly formed before thermal resetting
events at 11 and 4 Ma (FT ages).

The Asian–Russian zircons gave younger ages than for
Australian suites. Gia Nghia zircons (GNV Z4) gave uncor-
rected Th- disequilibrium U–Pb ages from 0.9±0.1 to 0.2
± 0.2 Ma and have relatively low U (<85 ppm), Th
(<47 ppm) and Th/U (0.42–0.59) values. The 0.9 Ma age lies
within error of the pooled FT age of 1.1±0.2 Ma. Ban Huai
Sai zircons (BHSL Z4) range in age from 4.2± 0.1 to 3.2
±0.1 Ma and overlap the FT ages. These zircons range into
higher U (68–310 ppm), Th (26–268 ppm) and Th/U (0.40–
0.90) than for Gia Nghia zircons. Podgelbanochny zircons
(PBV Z1a–c) gave ages from 10±1 to 12± 1 Ma, and lie
within error of the FT age. They show higher U (37–
791 ppm), Th (32–1378 ppm) and Th/U (0.89–1.80) than do
Gia Nghia and Ban Huai Sai zircons.

Geochemistry

The EMP analyses for Yarrowitch zircons (Electronic
Appendix 5) show Hf substituting for Zr (HfO2 0.76–
1.25 wt%). The Hf/Zr ratios (av. 0.015–0.020) are typical of
magmatic zircons in undersaturated to intermediate felsic
rocks (Deer et al. 1982). Lesser substitutions include P, Ce,
Th and U and Th/U ratios increase with Hf/Zr ratios.

Table 3 (continued)

Grain spot % 206Pbc Uppm Thppm
232Th/238U 206Pb*ppm

206Pb*/238U ±% Total 206 Pb U/±% Total
206Pb

Pb/±% 206Pb/238U
Age (Ma) ±2σ

2.1 3.93 50 45 0.94 0.069 0.0015 7.4 621.4 7.0 0.0773 23.1 10.0 1.04

3.1 – 50 44 0.92 0.071 0.0018 6.9 596.8 6.8 0.0091 92.1 11.3 1.09

3.2 12.20 42 37 0.91 0.072 0.0018 7.0 495.6 5.5 0.1426 19.8 11.4 1.13

4.1 3.09 54 51 0.99 0.082 0.0017 5.1 558.8 4.6 0.0706 24.2 11.2 0.81

5.1 3.92 37 32 0.89 0.058 0.0017 6.6 556.8 5.7 0.0772 33.0 11.1 1.04

Errors are 2-sigma; Pbc and Pb* indicate the common and radiogenic portions, respectively. (1) Common Pb corrected by assuming
206 Pb/238 U-207 Pb/235 U age-concordance

ppm=ppm wt
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The LA-ICP-MS trace element concentrations (ppm) in the
zircons (Electronic Appendix 6) suggest three main group-
ings. Weldborough, Yarrowitch and Podgelbanochny have
very low to low Sr, La and Pr (<0.1– <1 ppm), moderate Ce,
Nd, Sm, and Eu (up to 100 ppm) and high Y, Dy, Er, Yb, Hf,
Th and U ( >100 ppm). Ghia Nghia and Ban Huai Sai differs
in their low Nd, Eu and Ta (<1 ppm) and only moderate Yb,
Dy, Er, Th and U (up to 100 ppm). Mount McLean zircons
have low Ce (0.35–0.73 ppm) and Sm (0.13–0.99 ppm) and

higher Ta (up to 1.51 ppm). In total av. REE contents (ppm),
younger Weldborough is highest (1907), Yarrowitch (825),
Pogelbanochny (844) and Ban Huai Sai (513) are moderately
high, older Weldborough (212 ppm) and Gia Nghia (198) are
moderate and Mount McLean is lowest (73). The megacrysts
generally increase in Th with U, when Th/U ratios are <1
(Electronic Appendix 7a, b). When Th and U levels both
exceed 400 ppm, Th/U ratios exceed 1 (younger
Weldborough and rare Yarrowitch and Podgelbanochny

Fig. 5 Tera-Wasserburg U–Pb
concordia diagrams for zircon
megacrysts. a Weldborough, NE
Tasmania (WRT01) b
Yarrowitch, New South Wales
(YAR) c Mount McLean,
Queensland (MML01) d Gia
Nghia, Dak Nong, Vietnam
(GNV) e Ban Huai Sai, Laos
(BHSL02) f Podgelbanochny,
Primorye Russia (PBV)

Table 4 Zircon O isotope values
(δ18O, V-SMOW‰), megacrysts
and composites

Material/locality Individual crystal/colour/zone (no.

D53800. Zircon megacrysts, Yarrowitch,
NSW

G3 pink (3)

4.3–5.6 (av. 5.0)

G4 yellow (4)

4.0–5.6 (av. 4.6)

G2 green (4)

4.4–4.5 (av. 4.4)

D53795. Zircon-magnetite composite,
Riamukka, NSW

Zoned main core (7)

5.1–6.1 (av. 5.7)

Outer rim zone (5)

5.2–6.2 (av. 5.5)

D53796. Zircon-magnetite-sapphire
xenolith, Thailand,

Large zoned crystal (13)

6.9–9.4 (av. 8.4)

Small zoned crystal (5)

7.9–8.4 (av.8.1)

Analyst G. Giuliani

L. Sutherland et al.
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megacrysts). The Riamukka composite zircon (Electronic
Appendix 8a, b) has a similar though separate Th/U trend,
with higher U, Th, Th/U, La, Ce and REE.

The Nb and Ta values and Nb/Ta ratios in the zircons show
two main trends, groups with low Nb (1–7 ppm) and Ta (1–
3 ppm) and Nb/Ta ratios (1–3) and groups with higher Nb (7–
48 ppm), Ta (3.5–21 ppm) and Nb/Ta ratios (2.5–4). The more
depleted group includes older Weldborough, Mount McLean,
Ghia Nghia, Ban Huai Sai and some Yarrowitch and
Pogelbanochny subgroups. The more enriched group includes
younger Weldborough, Yarrowitch and Podgelbanochny sub-
groups. The two sets of values may relate to differences in the
source magma compositions. The lower Nb, Ta, Nb/Ta may
typify less fractionated, Si-poor melts and higher values more

fractionated and higher Si melts (Belousova et al. 2002).
Oxidation effects in melts may also play a part, as Ta4+ ion
oxidizes more readily than the Nb4+, giving a smaller Ta5+ ion
that preferentially substitutes into the Zr lattice site. Nb-rich
source compositions and other factors may also control Nb-Ta
and Zr-Hf fractionation during zircon crystallization, such as
mass dependant fractionation, electron configuration control
and metasomatic processes (Hui et al. 2011; Van Lichtervelde
et al. 2011).

Chondrite-normalised average REE arrays for the zircon
suites (Electronic Appendix 9) include some comparative ar-
rays. East Australian arrays (a) include older and younger
Weldborough and other Australian arrays. The Asian-
Russian arrays (b) are further compared with arrays from sev-
eral potential magma sources.

Oxygen isotope (δ18O) analyses

The zircon δ18O (‰) values are given in Table 4 and are
shown in relation to growth zoning in some examples
(Fig. 6). Values are lowest in the Yarrowitch megacrysts
(4.0–5.6 ‰, av.4.4‰) and marginally higher (5.1–6.2, av.
5.6 ‰) in the Riamukka composite zircon (Ce/Ce* 1.8, Eu/
Eu* 0.70). These values overlap the range for Phanerozoic
mantle-generated zircon (4.5–5.7 ‰; Valley 2003). Zircon
crystals in a Thailand sapphire-magnetite xenolith have higher
values (6.9–9.4 ‰), more typical of crustal associations. The
wider range of values in larger crystals, beyond analytical
uncertainty, suggest changes in source conditions during
growth.

176 Hf/177/ Hf and 176Lu /177Hf analyses

These measured isotopic ratios and the calculated initial εHf
values using the U–Pb ages of the grains are listed in
Electronic Appendix 10 and plotted in Fig. 7. The Lu–Hf
CHUR (chondrite uniform reservoir) line comes from
Bouvier et al. (2008) using parameters 176Lu/177 Hf CHUR
present day = 0.0336 ± 1 and 176Hf/177Hf CHUR present
day = 0.282785 ± 11 and the 176Lu decay constant of
1.865 × 10−11 from Scherer et al. (2001). The Depleted
Mantle (DM) reference line comes from Griffin et al. (2000).

The lowest εHf values (<5) lie towards the CHUR refer-
ence line (εHf 0) and include older Weldborough (~2.5–4.5),
Gia Nghia (~2–4) and Pogelbanochny (~1.5–5) zircons
(Fig. 7). The highest εHf values (9–14) lie towards the DM
reference line and include Yarrowitch (9–12) and Ban Huai
Sai (12–14) zircons (Fig. 7).MountMcLean (~7–8) and youn-
ger Weldborough (~8.5) zircons represent intermediate εHf
values among the suites. In comparison, these new Lu–Hf
results overlap previous results from the Australian-Asian re-
gion, which includes zircon megacryst suites from New

Fig. 6 Cathodoluminescence and SEM images showing oxygen isotope
values for: zircon-magnetite composite, Riamukka, New South Wales
(D53795); zircon-magnetite-sapphire xenolith, Khao Wu, Chanthaburi-
Trat , Thailand (D53796)

Fig. 7 Epsilon Hf versus U–Pb age, plot of east Australian and Asian
megacrysts in relation to CHUR and DM isotopic reservoirs
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England, New South Wales (Abduriyim et al. 2012) and east-
ern China (Yu et al. 2010).

Discussion

To test the megacryst groups for potential linear geochemical
trends, regression lines were calculated for plots between se-
lected trace element pairs (not figured). Linear regressions for
Th vs U and Y vs U for Gia Nghia and Podgelbanochny
zircons show high correlation coefficients (>0.93).
Weldborough, Yarrowitch and Ban Huai Sai results suggest
some linear behaviour, but include disparate groupings.
Mount McLean Th vs U plots show little linear coherence,
although their Y vs U plots do so, providing ambiguous re-
sults. Suites with the two strongest linear trends (GNV, PBV)
differ in their respective gradients for Th vs U (0.66 cf 1.42)
and Y vs U (9.51 cf 5.55), suggesting different geochemical
cont ro l s wi thin the i r respect ive crys ta l l i sa t ion .
Podgelbanochny Th vs U and Y vs U gradients resemble the
Yarrowitch gradients suggesting similar geochemical condi-
tions in their evolution. The strongly linear suites (GNV, PBV)
show Th vs U gradients that approach 1, while the Y vs U
gradients are variable. None of the suites approach the high

Th/U ratios (>3) in zircons from mantle diopside-phlogopite
veins related to carbonatitic kimberlites (Dawson et al. 2001).
Plots for other element pairs, show little linear behaviour,
particularly in relation to Hf. These variations suggest that
the linear trends are linked to specific substitution sites, but
mostly not coupled with Hf–Zr substitution.

The total REE, Y and U concentrations and Ce and Eu
relationships within each suite suggest some discrete sub-
groups exist (Electronic Appendix 11). These subgroups sug-
gest direct correspondences between REE, Y and U values
within suites, although gaps between subgroups vary in ex-
tent. The Ce and Eu relationships probably relate to anomalies
that developed within REE patterns due to valency/oxidation
and ionic size substitution effects during crystallization
(Hoskin and Schaltegger 2003). These anomalies are mea-
sured relative to adjoining chondrite- normalised (CN) REE
values, La and Pr for Ce (Ce/Ce*) and Sm and Gd for Eu (Eu/
Eu*). Two methods are used to calculate the anomaly size.
Either the Ce and Eu values are divided by averaged adjacent
element values (e.g. Belousova et al. 2002), or by the square
root of the multiplied adjacent element values (e.g. Hoskin
and Schaltegger 2003). This can give differences in the indi-
vidual anomaly values (see Table 5), so that the method used
needs citing for making literature comparisons. Results with

Table 5 Summary of
geochemical ratios, ZIP zircon
groups

Field Th/U Ce/Ce* Eu/Eu* (Yb/Sm)N

Weldborough

Group 1 0.26 14.29 (3.46) 0.75 (0.94) 36.7

Group 2 0.36–0.48 2.26–7.03 (8.16–40.48) 0.71–0.81 (0.92–0.93) 24.0–66.7

Group 3 1.18 20.58 (76.40) 0.65 (0.77) 50.1

Yarrowitch

Group 1 0.47–0.69 3.72–43.88 (10.36–125.92) 0.55–0.80 (0.64–1.00) 84.9–184

Group 2 0.63–1.27 22.08–116.21 (94.50–315.11) 0.63–0.79 (0.81–0.92) 82.2–141

Group 3 0.91–1.42 18.33–69.02 (46.85–210.59) 0.64–2.41 (0.81–0.94) 76.9–121

Mount McLean

Group 1 0.19 29.6 (35.69) 0.79 (1.11) 98.6

Group 2 0.42–0.44 4.26–6.76 (11.84–22.88) 0.84–0.91 (1.01–1.07) 22.9–23.5

Group 3 0.23 15.69 (29.59) 0.72 (3.55) 96.3

Gia Nghia

Group 1 0.43–0.61 3.44–21.38 (17.60–58.78) 0.69–0.78 32.5–80.3

Group 2 0.62 3.60 (13.05) 0.76 (0.89) 35.3

Ban Huai Sai

Group 1 0.41–0.53 25.9–34.75 (69.56–79.52) 0.30–0.32 (0.39–0.42) 162–182

Group 2 0.51–0.97 5.35–12.68 (14.48–33.96) 0.20–0.34 (0.24–0.41) 77.2–85.9

Podgelbanochny

Group 1 0.89–1.02 11.51–64.44 (33.95–126.43) 0.74–0.78 (0.84–0.91) 25.6–50.5

Group 2 0.93–1.21 10.78–85.06 (26.15–256.94) 0.54–0.75 (0.67–0.88) 30.1–78.7

Group 3 1.03–1.66 100.25-132.69 (173.39-409.16) 0.52-0.61 (0.66-0.73) 44.7-92.8

Group 4 1.31 95.08 (317.68) 0.30 (0.38) 77.5

Ce/Ce*, Eu/Eu* after Belousova et al. (2002). (Ce/ Ce*, Eu/Eu*) after Hoskin & Schaltegger (2003)
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La values below detection limit make calculations of Ce
anomalies problematic.

In this study, Pr correlates well with Nd and Sm over two
orders of magnitude on log-log plots, whereas La values do
not correlate with Pr or any other REE. Some La values seem
too high either due to an analytical problem or contamination,
so that calculating Ce/Ce* would give minimum values.
Estimates, however, can be approached using extrapolation
of Ce* from a curve fit through the other REE. In addition,
recent experimental work on Ce and Eu anomalies in natural
zircon revealed complex temperature and chemical inheri-
tance effects in source melts which need consideration in
interpreting Ce and Eu anomaly patterns (Trail et al. 2012).
Calculated Ce/Ce* anomalies for zircon increase with higher
oxygen fugacity and decrease with crystallisation temperature,
so provides less precise oxidation data than given by other
fugacity monitors. In contrast, Eu/Eu* in the melt is controlled
by both oxygen fugacity and inherited Eu/Eu* and Eu deple-
tion neither needs later feldspar (particularly plagioclase) crys-
tallization nor a temperature relationship.

Source magmas for ZIP megacrysts

Various elemental ratios such as Zr/Hf, Th/U, Hf/Yand Nb/Ta
and CN-multi-element and REE patterns in zircons (Table 5;
Electronic Appendix 7– 9, 11–14) help to constrain likely
source magma affinities. The Zr/Hf ratios generally decrease
with fractionation, so that Yarrowitch megacrysts (HfO2 from

0.8 to 1.1 wt %) would suggest moderately evolved magmas
within the ranges shown by carbonatitic, syenitic and granite
pegmatitic hosts (Hoskin and Schaltegger 2003). The Hf
values in the studied zircon megacrysts (4250 to 7300 ppm)
exceed those for zircon ‘megacrysts’ in nepheline syenite xe-
noliths from the French Massif Central alkali basalts (2810 to
3880 ppm; Paquette and Mergoil-Daniel 2009). However, as
Hf-enriched zircons (13,315 to 16,705 ppm) also occur in
nepheline syenite xenoliths in Bohemian alkali basalts
(Ulrych and Uher 1999), Hf and Zr/Hf values seem unreliable
indicators of precise zircon megacryst source magma compo-
sitions. Most Th/U ratios in the studied zircons exceed 0.5,
typical of many silicate melts. MountMcLean has lower ratios
(0.19 to 0.44), suggesting a separate affinity, but within ranges
among rarer magmas, such as kimberlitic and mafic N-
MORB, anatectic granite and trondhjemite melts (Belousova
et al. 2002; Schulz et al. 2006).

Zircon Hf and Y correlations are used to delineate affinities
for magmatic zircons (Pupin 2000; Belousova et al. 2002),
although xenocrysts from basalts may mask their initial affin-
ities. The ZIP megacryst plots spread across a Hf (wt %)–Y
(ppm) diagram (Electronic Appendix 12) and overlap plots for
known mantle zircon megacrysts (NE Italian basalts; Visonà
et al. 2006). Plots, however, may incorporate strong zoning in
zircon, which will blur Hf–Y trends. They mostly concentrate
away from limits for typical kimberlitic, carbonatitic,
lamproitic, doleritic and granitoid zircon fields, but show
marginal overlaps into kimberlitic (Mt McLean) and granitoid

Table 6 Ti ppm values (LA-ICP-
MS) and T°C estimates (Ferry &
Watson 2007), zircon megacrysts

Australian Megacrysts (Grain.spot) ppm

WRT Z1 YAR Z5 a YAR Z5 b YAR Z5 c YAR Z5 d MML Z1

(1.1) 1.93 (1.1) 3.69 (1.1) 6.81 (1.1) 4.44 (1.1) 2.92 (1.1) 5.32

(1.2) 1.35 (2.1) 3.11 (2.1) 4.88 (2.1) 3.42 (1.2) (45.47) (2.1) 2.18

(2.1) 2.52 (3.1) 3.50 (3.1) 5.91 (3.1) 4.41

(3.1) 2.78 (4.1) 1.17 (4.1) 5.13 (4.1) 3.75

(4.1) 0.76 (5.1) 2.15 (5.1) 4.47

(6.1) 1.52

(7.1) 2.27

Ti 0.76–2.78 1.17–3.69 4.88–6.81 3.42–5.91 2.92–45.47 2.18–5.32

T°C 550–638 578–660 682–711 654–699 642–(911) 620–690

Asian-Russian Megacrysts (Grain.spot) ppm

BHS Z2 GNV Z4 PBVa PBVb PBVc

(1.1) 3.34 (1.1) 4.78 (1.1) 6.13 (1.1) 9.23 (1.1) 7.90

(1.2) 15.9 (2.1) 6.48 (2.1) 9.16 (2.1) 7.94 (2.1) 12.17

(2.1) 6.09 (2.2) 7.11 (3.1) 4.59 (3.1) 7.50 (3.1) 6.63

(2.2) 3.83 (3.1) 7.11 (4.1) 5.22 (4.1) 6.88 (4.1) 7.60

(3.1) 1.43 (4.1) 3.47 (5.1) 8.30

(3.2) 1.73 (4.2) 5.03

Ti 1.43–15.9 3.47–7.11 4.59–9.16 6.88–9.23 6.63–12.17

T°C 591–791 655–715 667–738 712–738 708–765
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(Yarrowitch, Ban Huai Sai, Podgelbanochny) fields. The main
East Australian field overlaps a New Zealand field, while zir-
con composites range from granitoid (Riamukka) to
carbonatitic and ultrabasic (Khao Wua) affinities.

The classification and regression trees (CART) applica-
tions of Belousova et al. (2002) uses further zircon geochem-
istry to characterize zircon petrological fields, using various
plots such as Y values against heavy to mid-REE ratios
(Electronic Appendix 13a, b). Applying such plots to ZIP
suites (a) focuses on their enrichment in HREE (Yb/Sm
>10). Yarrowitch, Ban Huai Sai and composite zircons have
higher Yb/Sm (~ >100) than the other suites, with Ghia Nghia,
Weldborough and New Zealand having least Yb/Sm enrich-
ment. In the combined Y–Yb/Sm plots, Mt McLean, older
Weldborough and Gia Nghia fields overlap into kimberlite,
carbonatite and syenite fields, while the other suites trend into
the granitoid field. Another instructive example plots Yvalues
against Nb/Ta ratios, which reflect two levels of Nb-Ta values
in the ZIP results. This diagram (Electronic Appendix 13b)
reinforces the general ZIP groupings shown by the Y–Yb/Sm
plots. Ce/Ce* vs Eu/Eu* plots also find use in CART correla-
tions, but need cautious interpretation as they involve compli-
cations related to inherited source and thermal restrictions
(Trail et al. 2012).

The application of CART analysis to zircons may generate
some anomalies, as a descriptive rather than a fully prescrip-
tive classification (Hoskin and Schaltegger 2003). Further
analyses from specific hosts, however, has widened its scope
(Veevers et al. 2006; E. A. Belousova pers. comm. 2012).
CART analysis, nevertheless, can yield a spread of results
from one host rock, e.g. zircons from Antarctic nepheline
syenite gave carbonatitic, mafic, syenitic and granitoid origins
(Veevers et al. 2006). Explanations advanced for such spreads
were gaps in the CART data-base or multiple xenocrysts
which was considered unlikely. Another possibility raised
here is redistribution of incompatible elements in the zircons
under tectonic effects (Timms et al. 2006; Reddy et al. 2009),
as that host rock had undergone Palaeozoic transtension and
subduction events. Such redistributions are less likely to affect
the post-orogenic ZIP suites in this study.

A CART tree matched against the separate ZIP subgroups
(Table 5) suggests that some include mixed sources.
Weldborough (sg 1–3) gave carbonatitic, syenitic, granitoid
and basaltic matches, Yarrowitch (sg 1–3) were all basaltic,
Mount McLean (sg 1–3) included kimberlitic and
carbonatitic, Gia Nghia (sg 1–2) were mostly syenitic but also
basaltic, Ban Huai Sai (sg 1–2) were all basaltic,
Podgelbanochny (sg 1–4) were basaltic and larvikitic.
Further CART-based diagrams (Veevers et al. 2006) were used
to compare zircons in ZIP megacrysts, composites and inclu-
sions in sapphire and mantle-derived zircons from the Italian
Venetian and West Eger basalt provinces (Electronic
Appendix 13, 14). Most ZIP suites generated mixed

petrological assignments. However, significantly different
petrological peaks appeared in younger Weldborough (60 %
granitoid), in Yarrowitch, Ban Huai Sai and Pogelbanochny
(25–41 % lamproitic), in Mt McLean and Gia Nghia (37–
60 % kimberlitic, 16–36 % syenitic), and in Ban Huai Sai
(56 % mafic) suites.

In general ZIP megacrysts and composites reflect a wide
range of low-silica alkaline, K-rich and alkaline mafic, and
intermediate to felsic magmas. Zircon inclusions in sapphire
extends into high-Hf –enriched melts (Sutherland et al. 2015).
In some cases, CART correlations can highlight marked dis-
tinctions within ZIP suites sampled from alluvial sources, as at
Weldborough where younger zircon gave a strong granitoid
signal in contrast to other source signals from older
megacrysts.

Temperature relationships for ZIP megacrysts

Application of Ti-in-zircon thermometry to zircons include
some uncertainties (Ferry and Watson (2007), particularly in
estimating activities of SiO2 and TiO2 and pressure in the
source melts. Pressure effects were estimated at 50 ° C/ GPa,
but is probably twice this at GPa <1, based on Ti substitutions
in both Si and Zr sites (Ferriss et al. 2008). For ZIP
megacrysts, the precise TiO2 and SiO2 activities in the
crystallising medium are unknowns. At 750 ° C, changing
TiO2 activity from 1.0 to 0.5 will increase T by 60–70 ° C
and changing SiO2 activity likewise will decrease T by a sim-
ilar amount. As TiO2 activities in silicate melts are rarely<0.5,
these corrections should be relatively small for calculated
TiO2: SiO2 at 1:1 (Table 6). Since the T estimates incorporate
most of the above uncertainties, any notable differences be-
tween the zircon sets are probably real.

Averaged estimates for older Weldborough (WRT 1, 3, 4),
youngerWeldborough (WRT2) and Yarrowitch orange-brown
(YAR5a) zircons lie in the range T ~550–640 ° C.
Intermediate T ranges between 650 and 700 ° C are given
for Mount McLean (MM1), Yarrowitch white (YAR5b),
Yarrowitch red (YAR5c), Ban Huai Sai (BHS2) and Gia
Nghia (GNV4) megacrysts and higher T of ~700–750 ° C
for Podgelbanochny (PBVa, b, c) megacrysts . These T esti-
mates overlap those for other Australasian megacrysts
(Sutherland and Meffre 2009; Abduriyim et al. 2012;
Sutherland et al. 2014, 2015) and late-crystallizing T ranges
for a variety of ultramafic, alkaline mafic and felsic magmas
(Ferreira et al. 2002; Litvinovsky et al. 2002; Fall et al. 2007;
Page et al. 2007). The Riamukka composite zircon (Ti 12–
23 ppm; 755–830 ° C) and Lava Plains mantle-zircon includ-
ed in sapphire (Ti 7– 24; 715–830 ° C; Sutherland et al. 2015)
give higher T than most ZIP megacrysts, but overlap estimates
for West Eger rift mantle-zircons (725–810 ° C; Siebel et al.
2009).

L. Sutherland et al.

Author's personal copy



Genetic conditions for zircon megacryst formation

This study and cited literature suggest a variety of source
melts and P–T–X conditions produced the ZIP associations.
Most ZIP megacrysts lack significant Eu depletions, so that
plagioclase fractionation was not significant in their genesis,
although some noticeable depletions appear in Ban Huai Sai
and in the REE-enriched Podgelbanochny megacrysts.
Marked depletions, however, appear in high-U Gloucester
Tops megacrysts (Sutherland and Fanning 2001). Usually, a
strong chemical differentiation appears between the
megacrystic zircon and zircon included in sapphire, as the
latter shows higher Hf, Th and U and often notable Eu deple-
tion indicating separate chemical and probably different P–T–
X processes (Izokh et al. 2010). However, in some cases the
processes may overlap. In the Denchai gem field, Thailand
(Limtrakun 2002) and in SE Saxony, Germany (Seifert et al.
2008), the zircon megacrysts and zircon inclusions in sapphire
overlap in HfO2 (<1.6 wt %) and indicate closer genetic ties.
In zircon ( ± corundum)–bearing albitite dykes in Pyrenean
mantle peridotites, zircon in the corundum–bearing dykes
shows higher Hf, U, Th and REE than zircon in the dykes
without corundum (Monchoux et al. 2006; Pin et al. 2006).
This was attributed to differences in relative CO2 and H2O
contents in the crystallizing magmas within a similar P–T
regime.

The Ce and Eu anomalies in zircon suites reflect valency
changes related to changes of redox conditions during partial
mantle melting, melt interactions and eruptive processes, but
can guide mantle or crustal assignments to zircons (Li et al.
2000). Similar Eu/Eu*– Ce/Ce* plots for ZIP and mantle-
derived zircons show many congregate along an extended
mantle array line (Electronic Appendix 14). Some suites
(Ban Huai Sai, Khoa Wua composite) lie within a crust-
mantle transitional zone. Combining δ18O for ZIP megacrysts
(Nechaev et al. 2009) with Eu/Eu*–Ce/Ce* can further rein-
force such assignments, as δ18O values for Yarrowitch,
Podgelbanochny and Riamukka composite (4.2–6.2‰)
overlap typical ranges in values for rocks encountered
within mantle peridotites (Zheng et al. 2005a). Higher
δ18O values for Khao Wua and some Lava Plains zircons
(6.9–10.5‰; Sutherland et al. 2015) are more typical of
crustal ranges. Generally lower δ18O combined with+ εHf
values (2–14) for many ZIP zircons, however, suggest a
significant mantle role in their genesis. Thus, ZIP suites
crystallized at mantle to crustal levels, over a wide P–T–X
range. The subdued negative Eu anomalies in many of
their REE patterns negates widespread feldspar
(plagioclase) fractionation within their crystallizing sources,
even though felsic compositions are indicated. This may
favour crystallization under mantle pressures beyond pla-
gioclase stability limits, ~ 0.8 GPa in fertile mantle
lherzolite (Borghini et al. 2009).

Zircon crystallised at mantle levels would occur at or above
the expected ambient geotherm T at that depth. Some estimat-
ed T ranges for ZIP megacrysts seem low for a mantle
geotherm origin, although the higher ranges would match T
intersections at 25 to 35 km depth, typical of Moho depths in
eastern Australia (Collins et al. 2003). Given uncertainties in
Ti-in-zircon and xenolith thermo-barometry P–T estimates
and in sources for Eu and Ce anomalies, these parameters only
give provisional lithospheric correlations for ZIP megacrysts.

Synthesis of the ZIP zircon megacryst formation

The genesis of zircon-bearing megacryst suites along western
Pacific margins involves temporal and geodynamic aspects.
Temporal inputs include times of zircon formation and trans-
port in basaltic volcanism, while geodynamic inputs involve
the roles of rifting, mantle upwells, sea floor spreading and
subduction events. While local tectonic settings play a role,
repeated formation/ transport of such zircon megacrysts along
the continental western Pacific margin suggests that a wider
petrological process links them together. Further studies of
ZIP genesis and distribution will help test the overall model-
ling (Electronic Appendix 16).

Temporal ZIP relationships

Dual U–Pb and FT dating on the zircons indicate multiple
ages of formation and then thermal annealing events. The time
gaps between formation and later resetting can range from
near-coeval, to several Ma, extending up to 20 Ma, and in
some cases between 40 and 100 Ma and in the most extreme
case over 200 Ma (older Weldborough). Some sites include
multiple ages of zircon formation and repeated basaltic trans-
port that extended over spans of 55 to 70 Ma (Electronic
Appendix 15). Such prolonged residence before basaltic as-
cent is known elsewhere (Siebel et al. 2009). Young zircon
formation in eastern Australia (~0.3 Ma, Th-corrected U–Pb
age, Bullenmerri maar; Hiess et al. 2012; Sutherland et al.
2014) and Asia (~0.2 Ma, U–Pb age, Gia Nghia; this paper)
suggest that potential active zircon-forming processes remain
under young basalt areas.

The 176Hf/ 177 Hf values in zircons in relation to their initial
source values and radiogenic inputs can be tracked using their
U–Pb ages combined with 176Lu–176Hf isotopic decay effects
(Simonetti and Neal 2010; Matteini et al. 2010). This method
was applied to ZIP megacrysts from East China (Qiu et al.
2007; Yu et al. 2010) and East Australia (Abduriyim et al.
2012) and add to results for comparison here (Fig. 7). All these
ZIP suites show+εHf, which probably signifies inputs from
re-fertilization events within depleted mantle (Yu et al. 2010).
The lowest+εHf values (2–5; olderWeldborough, Gia Nghia,
Podgelbanochny), also provide the highest Tcrustal (0.68–
1.02 Ga) and TDM (0.48–0.76 Ga) model ages. The Tcrustal
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ages are only applicable if crustal components entered source
melts, while the TDM ages mark minimum ages of mantle
protolith events.

The oldest model ages (older Weldborough zircons) may
relate to complex basement fragmentation, migrations and im-
pacts of the late Proterozoic exotic Tasmanian-Selwyn block
and its early Paleozoic impacts with SE Australian terranes
(Cayley 2011). In Asia-Russia, model Tcrustal (0.68–
0.86 Ga) and TDM (0.48–0.59 Ga) ages (Gia Nghia,
Pogelbanochny) coincide with break-up of the supercontinent
Rodinia, opening the PaleoAsian and PaleoPacific oceans (0.9
to 0.7 Ga), major mantle re-fertilization (Dobretsov et al.
2003; Kovach et al. 2011) and early Phanerozoic fragmenta-
tions and collisions along margins of the South China and
China-Korean blocks (Lin et al. 2008; Derbeko 2013).

The younger Tcrustal (0.32–0.56 Ga) and TDM (0.26–
0.38 Ga) ages in eastern Australia (Weldborough,
Yarrowich, MtMcLean) reflect continental source inputs after
major separation from Rodinia (post- 0.58 Ga) with subse-
quent collisional accretions (Fergusson et al. 2007). These
accretionary orogenic phases formed the Lachlan, New
England and Hodgkinson Fold Belts, providing the settings
for later ZIP sites. In SE Asia, young Tcrustal (0.20–0.26 Ga)
and TDM (0.14–0.16) ages (Ban Huai Sai) probably reflect
sources developed after significant late Permian andesitic/
subduction in the area at ~0.25 Ga (Phommakaysone 2012).

In comparisons with other ZIP studies (Fig. 7), New
England, Australian older zircons (~0.17 to 0.24 Ga) show
lower εHf (6–10) and higher TDM (0.47–0.56 Ga) and
Tcrustal (0.63–0.82 Ga) ages than younger New England zir-
cons (0.037–0.045 Ga; εHf 10–14; TDM 0.16–0.29 Ga;
Tcrustal (0.23–0.45 Ga). The older model ages match pro-
posed source inputs linked to orogeny along the post-
Rodinia Pacific margin (Fergusson et al. 2007), while the
younger ages overlap late orogenic activity and the
Mesozoic break-up of eastern Gondwana (Scheibner 1999).
The East China mantle-derived zircons (εHf+3–14) overlap
the range of εHf for young ZIP suites in this study. The highest
εHf (+11.8–13.4) at Muling suggests more depleted mantle
existed there, while TDM in the south-trending suites (0.48–
0.32 Ga) suggests progressive modifications of mantle
sources took place since early Paleozoic time.

Overall, the ZIP model ages suggest diverse contributions
from heterogeneous mantle events, complex crustal continen-
tal break-ups and multiple orogenic re-workings along an ex-
tended Indo-Pacific margin. For the suites in the higher εHf
ranges, the TDM model ages may represent the most appro-
priate source correlations.

Geodynamic influences

The ZIP intraplate basalts formed along past spreading basins,
older and more distant from subduction zones for Australian

than for Asian-Russian basins. More prevalent western Pacific
back-arc and sea-floor basins than developed on eastern
Pacific subduction margins may reflect relative ages of the
subducting slabs (Nishimura 2002). Dehydration in older,
cooler, western slabs may favour thermal convection mantle
wedges behind the arcs, where hot, thin and weak lithosphere
contributes long-term term heat (Hyndman et al. 2005). The
continental margins are currently moving NNE for Australia
(5–7 cm/y; Tregoning 2003) and ESE for Asia-Russia (1–
2 cm/y; Kreemer et al. 2003). They have migrated from their
original mantle upwelling positions, pre-52 Ma for Australia
(Gaina et al. 1998) and pre-12–16Ma for Asia-Russia (Sibuet
et al. 2001; Ismail-Zadeh et al. 2013). Such original thermal
rift and metasomatic zones may influence later overlying
geodynamic processes (Rasskazov et al. 2003; Lei and Zhao
2005; Finn et al. 2005). Whether rift-spreading basaltic ZIP
magmatism in eastern Australia (Vasconcelos et al. 2008;
Sutherland et al. 2012) and ZIP magmatism along Asian-
Russian marginal basins (Graham et al. 2008) are closely sim-
ilar or distinctly different needs consideration. Residual slabs
from Pacific subduction lie under some basalt fields
(Replumaz et al. 2004; Lei and Zhao 2005). Metasomatic
pyroxenites and hornblendite veins in mantle wedge peridotite
were proposed for generating intraplate alkali basalts in China
(Zhang et al. 2009; Dai et al. 2014) and such veins would
provide Zr-bearing melts for zircon crystallization. The two
ZIP regions are considered separately.

Eastern Australia

Lithosphere along this margin migrates over residual slabs to
depths > 200 km and borders an extensive mantle thermal
zone 100 to 300 km deep under the Southwest Pacific back-
arc system, developed after changes in Phoenix Plate subduc-
tion at~100 Ma (Sdrolias et al. 2003; Rey and Müller 2008).
This triggered prolonged spreading, basaltic volcanism and
ZIP development (Sutherland et al. 2012; 2014). Deep slabs
that passed belowAustralian lithosphere (Schellart et al. 2009,
Schellart and Spakman 2015) may have affected earlier basal-
tic and ZIP generation. Later advance of NE Australian litho-
sphere over slabs from New Guinea convergence has gener-
ated flexural stresses and mantle melting since 10 Ma
(Dyksterhuise and Müller 2008), which incorporates ZIP de-
velopments (Mt McLean, Lava Plains; this study; Sutherland
et al. 2015). Some ZIP basalts generated since 35 Ma mark
lithospheric migration over large seismically slow astheno-
spheric perturbations at depths between 200 and 600 km
(Kennett and Abdullah 2011; Sutherland et al. 2012; 2014).
Migration of eastern Australian lithosphere since late
Cretaceous time (Schellart and Spakman 2015), when traced
over long-term asthenospheric upwelling (Electronic
Appendix 1) provides a cohesive model for numerous basaltic
episodes and accessory ZIP developments.
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In a model that linked gem megacryst formation to passage
over thermal upwells interacting with metasomatized mantle
(Sutherland et al. 1998; Sutherland and Fanning, 2001),
zircon-corundum crystallizing melts develop early and late
in the magmatic process and some ascend into crustal levels.
Continued lithospheric traverse over such upwells can deliver
multiple-aged ZIP sites in local basalt fields over periods ex-
ceeding 55 Ma. Clearly, Australian ZIP genesis involved a
geodynamically-sustained thermal process.

Eastern Asia-Russia

This region also shows significant mantle thermal upwells, but
cooler mantle underlies former spreading floors and regions
with westerly subducting slabs from adjacent convergent
boundaries (Electronic Appendix 1). Several rift and back
arc spreading events formed the Gulf of Thailand, South
China Sea, Japan Sea and Sea of Okhotsk (Verzhbitsky and
Kononov 2006; Yin 2010; Zhao et al. 2010; Ismail-Zadeh et
al. 2013; Zahirovic et al. 2014). These events initiated
Neogene intraplate basaltic volcanism and its scattered ZIP
sites (Yin 2010). Most SE Asian ZIP sites correlate with
post-rift stages of Gulf of Thailand basins and NW–SE and
N–S faulting in the Lampang–Chein Rai and Indochina plates
(<12 Ma ; Shoup et al. 2012). South China Sea rifting marked
a significant thermal feature and most East China ZIP basalts
post-date cessation of the spreading phase (~20.5 Ma; Cullen
et al. 2010). Far East Russian ZIP sites mostly post-date Japan
Sea and Sea of Okhotsk spreading (<15 Ma; Nechaev et al.
2009; Yin 2010).

The former spreading floors have migrated ESE with lith-
ospheric plate motion (2 to 4 cm/y; Ismail-Zadeh et al. 2013),
so that the initial asthenospheric thermal zones went below
subcontinental lithosphere, to form basalt magmas and atten-
dant ZIP sites. Active slabs subducted along the Japan arc
descend through thermal upwelling zones below Primore ba-
salt fields and the large Changabi volcano where slabs reach
depths below 410 km (Lei and Zhao 2005; Ismail-Zadeh et al.
2013). Breaching of the slab under Changabai allowed escape
of subsidiary thermal upwells. Within the mantle upwells,
imposed slabs affected mantle melting and major lithospheric
faults tap basaltic magmas, to contribute to ZIP distribution in
these regions.

Conclusions

Zircon megacrysts occur as derived xenocrysts from
Mesozoic-Cenozoic intraplate alkaline basalts, adjacent to
rift/spreading basins along West Pacific continental margins.
This 12,000 km N–S zone of multiple zircon crystallizations
yields U–Pb formation ages from 250 to<1Ma and ZFT reset
ages from 205 to <1 Ma.

The zircons largely lack inherited cores or metamorphic
overgrowths and suggest diverse lithospheric, mostly mag-
matic origins. Mineral inclusions and trace element patterns
indicate derivation from ultramafic to felsic source magmas.
Crystallization T, based on Ti-in-zircon thermometry, ranges
from 550 to 830 ° C.

Main element parameters such as Hf and Zr/Hf values for
the zircons form initial, but partly unreliable indicators of
source magmas. Trace element parameters such as U, Th
and U/Th values indicate some systematic magmatic trends,
but also irregular exceptions, between megacryst suites.

The Yand total REE values vary considerably in megacryst
suites and provide some constraints in assigning zircons to
specific source magmas. Use of Ce/Ce*/ Eu/Eu* plots help
to relate zircons to mantle or crustal magma sources, but
source complexities and a broad transitional overlap limit ex-
act interpretations.

Isotopic O (δ18O) and Hf (176Hf/ 177Hf) values for zircons
suggest mantle and crustal sources, including metasomatized
mantle. Initial εHf values (+2–14) related to zircon ages sug-
gest magma sources inherited inputs from a range of mantle
(TDM 0.14–0.76 Ga) and continental (Tcrustal 0.20–1.02 Ga)
model age events.

Combined U–Pb and ZFTage-dating, trace element, O and
Hf-Lu isotopic geochemistry, crystal form and Ti-in-zircon
thermometry analysis on zircons from ZIP basalt fields gives
a wide data base to consider their genesis. The present study
suggests their origin is related to multiple factors, rather than a
simple origin.

The ZIP zone reflects intraplate magmatism along conti-
nental margins to former spreading rifts. East Australian zones
developed earlier and farther from bounding subduction zones
than did most Asian-Russian sites. Lithospheric motions over
asthenospheric upwells and back-arc slab insertions contrib-
uted to ZIP genesis.
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