УДК [552.16+552.30](571.66)

ПЕТРОЛОГИЯ И ГЕОХИМИЯ МЕЛОВОГО ГРАНИТОИДНОГО МАГМАТИЗМА ЦЕНТРАЛЬНОЙ КАМЧАТКИ (НА ПРИМЕРЕ КРУТОГОРОВСКОГО И КОЛЬСКОГО ИНТРУЗИВНЫХ КОМПЛЕКСОВ)

© 2014 г. И. А. Тарарин*, З. Г. Бадрединов*, С. И. Дриль**, В. М. Чубаров***, Н. С. Герасимов**, Г. П. Сандимирова**, Н. Н. Ильина**

*Дальневосточный геологический институт ДВО РАН просп. 100-лет Владивостоку, 159, Владивосток, 690022, Россия; e-mail: itararin@mail.ru **Институт геохимии СО РАН ул. Фаворского, 1а, Иркутск, 664033, Россия; e-mail: sdril@igs.irk.ru ***Институт вулканологии и сейсмологии ДВО РАН б-р. Б. Пийпа, 9, Петропавловск-Камчатский, 683006, Россия; e-mail: zond@kscnet.ru Поступила в редакцию 01.01.2013 г. Получена после доработки 20.03.2014 г.

Рассматривается проблема геохимической типизации гранитоидного магматизма в зоне взаимодействия океанической и континентальной плит на примере мезозойских гранитоидов крутогоровского и кольского интрузивных комплексов Срединного хребта Камчатки. На основании оригинальных геологических, петрологических и геохимических данных (в том числе по распределению в породах изотопов Sr, Nd и Pb) установлено, что исходным протолитом для гранитоидов служили вулканогенно-терригенные породы, формировавшиеся в пределах мелового окраинного бассейна на востоке Азиатского континента. Кристаллизация гранитоидов (U-Pb SHRIMP возраст около 80 млн лет) происходила в условиях андалузит-силлиманитовой фации глубинности, отвечающей давлению около 2 кбар, обусловив контактовый метаморфизм вмещающих толщ, представленных осадочными отложениями с пластовыми телами основных и ультраосновных вулканитов (кихчикская серия и ее метаморфизованные аналоги – колпаковская, камчатская и малкинская серии). Фиксируемая нижняя возрастная граница осадконакопления вмещающих отложений и время проявления базитового вулканизма совпадает с началом формирования Охотско-Чукотского вулканогенного пояса. Такая корреляция не случайна: она отражает закономерную связь процессов магматической активизации, проявленных в окраинно-континентальном осадочном бассейне с формированным на востоке Азии окраинно-континентальным вулканическим поясом. Развитие основного вулканизма в структуре осадочного бассейна, сопровождаемое подъемом глубинных флюидов, обусловило вовлечение в магматическую деятельность корового субстрата с образованием коровых магматических очагов, проявившихся излияниями средних и кислых лав и становлением малоглубинных гранитоидных интрузивов, имеющих широкое площадное распространение и обусловивших контактовый метаморфизм вмещающих вулканогенно-осадочных отложений.

В дальнейшем коллизионные процессы эоцена (60—50 млн лет), связанные с обдукцией океанического сегмента коры переходной зоны на азиатскую континентальную окраину, привели к тектоническому скучиванию пород Центральной Камчатки и резкому увеличению мощности коры, создав благоприятные условия для ее метаморфических преобразований, достигавших уровня кианит-силлиманитового типа глубинности амфиболитовой фации под воздействием термального фронта и глубинных флюидов, охвативших нижние горизонты коры. Региональный метаморфизм эоцена обусловил не только метаморфические изменения, мигматизацию и гранитизацию отложений Срединного хребта, испытавших на первом этапе только контактовое ороговикование, но и метаморфизм, мигматизацию и интенсивное разгнейсование магматических пород кольского и крутогоровского комплексов, превратив их в гнейсовидные метаграниты.

DOI: 10.7868/S0869590314060053

ВВЕДЕНИЕ

Современные классификации геодинамических типов гранитоидных пород не охватывают гранитоиды окраинных бассейнов, таких как Охотское и Японское моря и их палеоаналогов геологического прошлого, хотя гранитоидным породам, наряду с базальтами, в геологическом строении этих бассейнов принадлежит существенная роль (Леликов, Маляренко, 1994). Базитовые вулканиты окраинных бассейнов запада Тихого океана характеризуются широким спектром геохимических типов, обусловленных участием в их генезисе различных источников: реликтовых участков верхней мантии, деплетированной астеносферы и обогащенной мантии (Филатова, 2003, 2008). О геохимической специализации гранитоидных пород можно судить лишь по единичным публикациям (Леликов, Маляренко, 1994; Крук и др., 2008). Авторы статьи попытались восполнить этот пробел, приведя материалы по петрологии и геохимии меловых гранитоидов крутогоровского и кольского комплексов Центральной Камчатки.

Гранитоиды мелового возраста пользуются широким распространением среди метаморфических образований центральной части Срединного хребта Камчатки, образуя крупные тела площадью в несколько десятков и сотен квадратных километров, а также мелкие изолированные пластовые залежи и дайки мощностью до нескольких десятков метров.

Исторически сложилось, что плутоны гранитоидов северной части региона были отнесены к крутогоровскому, а массивы южной и центральной его частей - к кольскому плутоническим комплексам. По мнению большинства исследователей (Геология СССР, 1964; Государственная ..., 2006; Карта ..., 1999; Константиновская, 2003; Лучицкая, 2012; Лучицкая, Соловьев, 2010; 2012; Лучицкая и др., 2008; Колосков, 2011; Рихтер, 1995; Соловьев, 2008; Ханчук, 1985; Hourigan et al., 2009 и др.), гранитоиды крутогорского комплекса прорывают метаморфические породы (плагиогнейсы и мигматиты) колпаковской серии, залегающей в основании разреза Срединного хребта, и на их размытой поверхности происходило формирование отложений камчатской и малкинской серий. Кольские гранитоиды относились к более молодому интрузивному комплексу, массивы которого интрудировали также отложения камчатской, малкинской и кихчикской серий (Геология СССР, 1964; Селянгин, 2009; Синица, Шашкин, 1979; Ханчук, 1985).

Несмотря на многочисленные публикации, в которых характеризуется природа меловых гранитоидов Центральной Камчатки, вопросы типизации этих пород и реконструкции геодинамических условий их формирования остаются остро дискуссионными. Еще сравнительно недавно Срединнокамчатский кристаллический массив рассматривался в качестве микроконтинента, аккретированного к тектоническому блоку Охотского моря, которое в свою очередь интерпретировалось как океаническое плато, причлененное к Азиатскому континенту (Богданов, Добрецов, 2002). Формирование протяженной зоны позднемеловых базитовых вулканитов Восточной Камчатки объяснялось аккретированием к континенту двух вулканических дуг, зародившихся в центральной части Тихого океана и переместившихся

к восточной окраине Азии при движении океанических плит (Константиновская, 2003; Соловьев, 2008; Шапиро и др., 2008; Hourigan et al., 2009). Подобная схема геодинамического развития камчатского региона предполагала образование аккреционной призмы на восточной окраине Азиатского континента (Лучицкая, 2012; Лучицкая и др., 2008; Константиновская, 2003; Соловьев, 2008; Ханчук, 1985; Шапиро и др., 2008) и определила петрогенетические модели формирования гранитоидных пород. Гранитоиды крутогоровского комплекса были отнесены к аккреционному и коллизионному типам гранитоидов (Лучицкая, 2012), хотя причины их проявления в аккреционных призмах совершенно не ясны (Лучицкая и др., 2008).

Новейшие данные по изотопии Sm и Nd магматических образований дна Охотского моря (Емельянова и др., 2012), а также материалы по цирконометрии и изотопии пород Центральной Камчатки (Костицын и др., 2012; Кузьмин, Богомолов, 2013) свидетельствуют о том, что до конца позднего мела эти регионы представляли собой окраину Азиатского континента без участия аккретированных блоков океанической коры. К аналогичному заключению пришел В.В. Акинин с соавторами (Акинин и др., 2013), установившие, что аккреция в меловой период не играла существенной роли в формировании коры континентальной окраины Востока Азии, наращиваемой за счет активного вулканизма и процессов андерплейтинга. Сходного мнения придерживается А.В. Колосков (2011), полагающий, что проявления мелового гранитоидного магматизма Срединного хребта трудно объяснить с позиций аккреционной тектоники.

Геологические данные свидетельствуют, что в период с раннего мела до начала палеогена Камчатка совместно с Корякским нагорьем являлись частью обширного осадочного бассейна восточной окраины Азиатского континента протяженностью более 500 км, в пределах которого шло накопление флишоидного терригенного материала с устойчивыми возрастными популяциями детритовых цирконов от протерозоя до позднего мела. На рубеже раннего и позднего мела процесс осадконакопления был осложнен вспышкой базитового и ультрабазитового вулканизма, синхронного с формированием Охотско-Чукотского вулканогенного пояса (Акинин, Миллер, 2011), и последующим гранитоидным магматизмом (Государственная ..., 2006; Лучицкая, 2012; Соловьев, 2008; Hourigan et al., 2009).

Центральная часть Срединного хребта Камчатки сложена зонально метаморфизованными вулканогенно-терригенными отложениями, формировавшимися в пределах этого окраинно-континентального осадочного бассейна, снос материала

в который происходил с восточной окраины Азиатского континента. Наиболее метаморфизованные образования амфиболитовой фации (колпаковская и камчатская серии) развиты в осевой зоне Срединного хребта, на западных и восточных склонах которого обнажаются метаморфизованные в эпидот-амфиболитовой и зеленосланцевой фациях отложения малкинской и кихчикской серий. Возраст протолита всех терригенных толщ по данным U-Pb SHRIMP изотопии цирконов конец раннего мела-поздний мел (Соловьев, 2008; Hourigan et al., 2009).

В настоящей статье приведены новые данные по геологии, минералогии и геохимии меловых гранитоидов Центральной Камчатки, позволяющие более аргументированно подойти к решению проблемы формирования этих пород. Основное

внимание уделено гнейсовидным гранитоидам кольского и крутогоровского интрузивных комплексов, огнейсованным при наложенных процессах метаморфизма, гранитизации и мигматизации, охвативших в раннем эоцене как вмещающие отложения, так и первично-интрузивные граниты.

МЕТОДИКА ИССЛЕДОВАНИЙ

Химические анализы петрогенных, рассеянных и РЗЭ выполнены в Аналитическом центре Дальневосточного геологического института ДВО РАН. Содержания SiO₂ и П.п.п. определены методом гравиметрии, остальных петрогенных элементов - методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой на приборе ІСР-6500. Ряд рассеянных элементов определен рентгенофлюоресцентным методом на автоматическом спектрометре S₄ Pioneer, a содержания РЗЭ - методом ICP-MS на приборе Agilent 7500с. При выполнении элементного анализа ICP-MS и ICP-AES для разложения проб использовался метод сплавления с метаборатом лития (LiBO₂) в соотношении "навеска : плавень" 1 : 3. Величина относительного отклонения при определении микроэлементов не превышала 10%.

Изотопный анализ Sr и Nd выполнен в Институте геохимии CO PAH на многоколлекторном масс-спектрометре Finnigan MAT 262 (Байкальский аналитический ЦКП CO PAH, г. Иркутск). Правильность измерения изотопного состава Sr контролировалась по стандарту NBS-987, измеренная величина ⁸⁷Sr/⁸⁶Sr в котором составила 0.710253 \pm 5 (2 σ , N = 7). Точность изотопного анализа Nd контролировалась по стандарту JND-1, измеренная величина которого составила

¹⁴³Nd/¹⁴⁴Nd = 0.512104 ± 9 (2 σ , N = 9). Для расчета величин ¹⁴⁷Sm/¹⁴⁴Nd и ⁸⁷Rb/⁸⁶Sr в пробах использовались данные ICP-MS анализа, выполненного в Аналитическом центре ДВГИ ДВО РАН. Изотопный анализ Pb выполнялся в Институте геохимии СО РАН на многоколлекторном масс-спектрометре с индуктивно связанной плазмой NEPTUNE (Байкальский аналитический ЦКП СО РАН, г. Иркутск). Химическая подготовка проб к анализу проводилась с использованием метода двойного изотопного разбавления. Правильность измерения изотопного состава Рь контролировалась по стандарту NBS-981, для которого получены следующие величины изотопных отношений ²⁰⁶Pb/²⁰⁴Pb = 16.9362 ± 10 (2 σ , N = 19); $^{207}\text{Pb}/^{204}\text{Pb} = 15.4894 \pm 11 (2\sigma, N = 19); ^{208}\text{Pb}/^{204}\text{Pb} =$ $= 36.6872 \pm 24$ (2 σ , N = 19).

ГЕОЛОГИЧЕСКИЙ ОЧЕРК

В интрузивах меловых гранитоидов Срединнокамчатского кристаллического массива наблюдаются граниты как с первично-магматическими гранитными структурами, сформированными при внедрении и кристаллизации гранитоидов (около 80 млн лет назад), так и метаграниты с гнейсовидными текстурами, образование которых обусловлено процессами наложенного эоценового регионального метаморфизма, гранитизации и мигматизации (около 52 млн лет назад). В центральных частях кристаллического массива, где этот второй цикл метаморфизма отвечал условиям амфиболитовой фации, интрузивные гранитоиды были метаморфизованы, мигматизированы и превращены в метаграниты с гнейсовидной текстурой, а в краевых его частях, где степень высокобарического эоценового метаморфизма соответствует зеленосланцевой и эпидот-амфиболитовой фациям, в интрузивах сохраняются первично-магматические разности совместно с огнейсованными гранитами, обычно приуроченными к краевым зонам интрузивов.

В высокотемпературных зонах Срединнокамчатского массива текстура гранитоидов повсеместно сланцеватая, характеризующаяся ориентированным расположением скоплений кристаллов биотита, ассоциирующихся с крупными выделениями катаклазированных зерен магматического плагиоклаза и кварца размером 0.5–2.0 мм и бластическими метаморфогенными зернами кварца, плагиоклаза, биотита и мусковита размером в десятые и сотые доли мм.

Примером меловых гранитоидных массивов, где наблюдаются различные структурные разновидности пород (массивные первично-магматические и вторичные гнейсовидные), является интрузив горы Воровской (1431 м) размером до 15 км в поперечнике, обнажающийся в бассейне р. Левая Воровская на западных склонах Средин-

¹ Гнейсовидные гранитоиды – первично интрузивные породы, огнейсованные в эоцене (52 млн лет назад) при наложенных процессах метаморфизма, гранитизации, мигматизации и рассланцевания.

ного хребта. Центральная часть интрузива сложена порфировидными бластокатаклазированными амфибол-биотитовыми и биотитовыми гранодиоритами с первично-магматическими структурами, а краевые зоны интрузива мощностью около 300—400 м представлены гнейсовидными катаклазированными биотитовыми гранодиоритами.

Наиболее крупным массивом гранитоидов крутогоровского комплекса является собственно Крутогоровский плутон (площадью более 100 кв. км), протягивающийся от истоков р. Золотой на запад в бассейн р. Крутогорова и на юг в бассейн среднего течения р. Квахона и верховья р. Хейван (рис. 1). Строение крутогоровских гранитоидов неоднородно: наряду с преобладающими гнейсовидными разностями наблюдаются участки, в которых проявлена лишь слабая линейность. Гнейсовидные гранитоиды характеризуются отчетливо выраженной сланцеватостью. Гранулированные зерна полевых шпатов и кварца образуют линзовидные агрегаты, разделенными тонкими полосками мелкочешуйчатого биотита. Кроме биотита присутствует мусковит, формирующийся на заключительных этапах наложенного регионального метаморфизма, сопровождаемого гранитизацией и мигматизацией.

Крутогоровские гранитоиды контактируют с кианит-гранат-слюдистыми \pm ставролит и гранат-слюдистыми плагиогнейсами и мигматитами колпаковской серии — продуктами эоценового регионального метаморфизма, гранитизации и мигматизации. Высокие *P*-*T* параметры этого метаморфизма обусловили полное уничтожение во вмещающих породах парагенезисов предшествующего контактового метаморфизма, связанного с внедрением и кристаллизацией гранитоидов.

Контактовые взаимоотношения крутогоровских гранитов с вмещающими породами отчетливо выражены в истоках р. Крутогорова (рис. 2). Здесь граниты контактируют с регионально метаморфизованными в эоцене в условиях кианитсиллиманитовой субфации глубинности амфиболитовой фации метаморфическими породами колпаковской серии и перекрываются зонально метаморфизованными в этот же период регионального метаморфизма отложениями малкинской серии в составе шихтинской, андриановской, хейванской и химкинской свит (уровень их метаморфизма варьирует от амфиболитовой до зеленосланцевой фации) и слабо измененными (в условиях нижних частей зеленосланцевой фации) отложениями кихчикской серии (Геология СССР, 1964; Рихтер, 1995; Тарарин, Чубаров, 2004; Ханчук, 1985; Шульдинер и др., 1987; Соловьев, 2008; Hourigan et al., 2009).

Наблюдаемая в истоках реки Крутогорова зона контакта пород шихтинской свиты (нижняя часть малкинской серии) и крутогоровских гранитоидов интерпретируется геологами по-разному. Одни исследователи (Рихтер, 1995; Соловьев, 2008; Ханчук, 1985; Шульдинер и др., 1987; Hourigan et al., 2009) считают, что гранат-ставролит-слюдистые кристаллические сланцы свиты со стратиграфическим несогласием залегают на гнейсовидных гранитоидах и содержат в своем основании маломощный (до 1.5 м) невыдержанный по простиранию базальный горизонт мелкозернистых лейкократовых гранат-слюдистых "метадресвянников" с обломками крутогоровских метагранитов и плагиогнейсов колпаковской серии.

По мнению других исследователей (Бондаренко, 1992; Кирмасов и др., 2004; Некрасов, 2003), кристаллические сланцы шихтинской свиты отделены от плагиогнейсов и мигматитов колпаковской серии и гранитоидов Крутогоровского интрузива разломной зоной крупного Андриановского надвига, имеющего в своем основании горизонт серпентинитового меланжа, бластомилонитов и тектонических брекчий ультраосновного и основного состава (Рихтер, 1995; Соловьев, 2008; Тарарин, Чубаров, 2004; Ханчук, 1985;

Рис. 1. Схематическая геологическая карта северной части Срединнокамчатского кристаллического массива (истоков рек Крутогорова, Золотая, Хейван и Квахона). Составлена с использованием материалов (Карта ..., 1999).

^{1 –} аллювиальные отложения; 2 – четвертичные вулканиты кальдеры вулкана Хангар – андезиты, дациты, кремнекислые пемзы; $3 - химкинская свита K_2 hm - метавулканиты основного и среднего состава, метаморфизованные крем$ нисто-вулканогенные породы, метапесчаники; 4 – хейванская свита $K_{1-2}hv$ – филлиты, кристаллические сланцы, метапесчаники, метаалевролиты; 5 – андриановская свита K_{1-2} an – амфиболовые, амфибол-плагиоклазовые, эпидотамфибол-плагиоклазовые сланцы основного и ультраосновного состава, филлитовидные сланцы, метатуфобрекчии; 6- камчатская серия (шихтинская свита) K_{1-2} km- биотитовые, гранат-биотитовые, гранат-ставролит-биотитовые и гранат-ставролит-слюдистые кристаллические сланцы; 7-9 – колпаковская серия K_{1-2} kl: верхняя толща (7) – чередование амфиболитов, гранатовых амфиболитов, клинопироксен-амфиболовых основных сланцев, гранат-биотитамфиболовых плагиогнейсов и кварцитов, кианитсодержащих плагиогнейсов: средняя толша (8) – гранат-слюдистые плагиогнейсы, мигматиты; нижняя толща (9) — кианитсодержание гранат-слюдистые плагиогнейсы, мигматиты, реже амфиболиты и гранатовые амфиболиты, квварциты; 10 – лавкинский плутонический комплекс P₃-N₁ – габбро, габбро-нориты, диориты, гранодиориты, монцониты, кварцевые сиениты; 11 – кольский плутонический комплекс K_{1-2} – массивные и гнейсовидные биотитовые граниты и гранодиориты; 12 – крутогоровский плутонический комплекс К₁₋₂ – гнейсовидные биотитовые и гранат-биотитовые граниты, гранодиориты, редко тоналиты; 13 – синметаморфические лейкократовые граниты и пегматиты; 14 – тектонические нарушения: надвиги, главные разломы; 15 – роговиковые ореолы; 16 – граница кальдеры вулкана Хангар; 17 – геологические границы; 18 – точки отбора образцов крутогоровских гранитоидов. На врезке – район исследований.

Рис. 2. Схематическая геологическая карта северной части Крутогоровского гранитоидного массива (истоки р. Крутогорова). Составлена с использованием материалов (Рихтер, 1995; Ханчук, 1985).

1 - древнечетвертичные пемзы и туфы вулкана Хангар; <math>2-5 - малкинская серия: 2 - химкинская свита - метаморфизованные кремнисто-вулканогенные отложения; <math>3 - хейванская свита - гранат-ставролит-биотитовые кристаллические сланцы, филлиты, метапесчаники; <math>4-5 -андриановская свита: 4 -амфиболиты, эпидотовые амфиболиты, 5 метапикриты, серпентинитовый меланж, тектонические брекчии основного и ультраосновного состава; 6 -шихтинская свита - гранат-слюдистые и гранат-ставролит-биотитовые кристаллические сланцы, базальные тектонические брекчии; 7 -колпаковская серия (нижняя толща) - гранат-биотитовые плагиогнейсы и мигматиты; 8 -биотитовые и гранат-биотитовые гнейсовидные гранитоиды крутогоровского комплекса; 9 -лавкинский интрузивный комплекс – биотитовые и биотит-амфиболовые порфировидные гранодиориты и гранит-порфиры; 10 -зоны сульфидной медноникелевой минерализации; 11 -геологические границы; 12 -элементы залегания: а) слоистости, б) гнейсовидности; 13 -Андриановский надвиг (Кирмасов и др., 2004); 14 - точки наблюдения.

Ноигідап et al., 2009). Возможно, что "метадресвянники" с редкими обломками метагранитов и плагиогнейсов основания шихтинской свиты являются не метаконгломератами, а представляют собой тектонические обломки горизонта брекчий и бластомилонитов, сформированных тектоническими процессами наложенного метаморфизма, сопровождаемого надвигоообразованием и скучиванием в раннем эоцене (52 млн лет назад) при образовании современной структуры Срединнокамчатского массива (Тарарин и др., 2011).

Северная часть Крутогоровского интрузива сложена гнейсовидными биотитовыми и гранатбиотитовыми гранитами и гранодиоритами. Реже встречаются гнейсовидные диориты и кварцевые диориты, а эндоконтактовые зоны вблизи с перекрывающими отложениями малкинской серии представлены гнейсовидными бластокатаклазитами, нацело утратившими свою первичную магматическую гранитную структуру и состоящими из линзовидных раздробленных кристаллов кварца и плагиоклаза среди тонкозернистой биотитмусковит-полевошпатовой массы. В западной части массива, в бассейнах рек Квахона и Хейван (см. рис. 1) развиты прикровлевые фации Крутогоровского интрузива с большим количеством переработанных ксенолитов и крупных блоков провесов кровли вмещающих пород.

Гранитоиды кольского комплекса (рис. 3) в осевой части Срединного хребта располагаются среди мигматитов и мигматизированных плагиогнейсов колпаковской серии, совместно с которыми были метаморфизованы в эоцене и превращены в гнейсовидные метаграниты. При этих процессах наложенного метаморфизма парагенезисы малоглубинных контактовых роговиков, связанных с внедрением гранитоидов, были полностью уничтожены и сохранились только на крыльях антиклинальной структуры хребта, где отмечаются интрузивные взаимоотношения гранитоидов с вмещающими их вулканогенно-терригенными породами кихчикской серии (рис. 4), за счет которых сформированы ореолы роговиков мощностью до 20-30 и более метров.

В краевых зонах интрузивов кольского комплекса отмечается интенсивный катаклаз и бластез гранитоидов одновременный с процессами наложенного регионального метаморфизма, что обусловливает трансформацию магматических пород в гнейсовидные гранитоиды и очковые бластокатаклазиты гранодиоритового состава, нацело утратившими свою первичную-магматическую гранитную структуру (рис. 5).

ВОЗРАСТ ГРАНИТОИДОВ

U-Pb SHRIMP датирование цирконов гнейсовидных гранитоидов крутогоровского комплекса

ПЕТРОЛОГИЯ том 22 № 6 2014

свидетельствует, что время их формирования определяется интервалом от 76.2 \pm 1.5 до 83.1 \pm ± 2.0 млн лет (Лучицкая, 2012; Лучицкая, Соловьев, 2010, 2012; Лучицкая и др., 2008; Hourigan et al., 2009). Большинство изученных кристаллов циркона характеризуется зональным строением. Отдельные кристаллы обнаруживают центральные резорбированные ксеногенные ядра с возрастом около 1050 млн лет, окруженные оторочками, возраст которых 77 млн лет (Соловьев, 2008; Hourigan et al., 2009). В некоторых кристаллах циркона отмечаются узкие оторочки с возрастом 54 ± 2.1 млн лет (Лучицкая, Соловьев, 2010), отвечающие времени наложенных процессов метаморфизма, гранитизации и мигматизации. Наличие древних ксеногенных ядер в кристаллах циркона гранитоидов однозначно свидетельствует о коровой природе протолита. Редкие находки древних ядер в изученных цирконах гранитоидов и их широкий возрастной спектр цирконов во вмещающих метаморфических породах (Соловьев, 2008; Bindeman et al., 2002; Hourigan et al., 2009) обусловлены процессами растворения цирконов щелочными растворами (Watson, Harrison, 1983) при гранитизации, сопровождавшей региональный метаморфизм эоцена.

К-Аг возраст гнейсовидных гранитоидов кольского комплекса охватывают интервал 57.0– 89.5 млн лет, а Rb-Sr изохронные определения составляют 70, 65 и 66 млн лет (Виноградов, Григорьев, 1994). U-Pb SHRIMP датирование цирконов из кольских гнейсовидных гранитоидов в 80 ± 2 млн лет (Государственная ..., 2006) показало, что они формировались одновременно с внедрением и кристаллизацией гранитоидов крутогоровского комплекса, т.е. являются продуктами единого магматического этапа.

МИНЕРАЛОГИЯ И ПЕТРОГРАФИЯ ГРАНИТОИДОВ

Биотитовые и гранат-биотитовые гнейсовидные граниты и гранодиориты крутогоровского комплекса — серые и светло-серые сланцеватые породы, состоящие из железистого биотита $(X_{Mg} = 0.3-0.4)$, кислого плагиоклаза $(X_{An} = 0.2-0.3)$, калиевого полевого шпата, кварца и небольшого количества (около 1 объемн. %) железистого граната $X_{Mg} = 0.08-0.20$ (обр. 803-Б, 820-Д, 828, 944, 1112/4, табл. 1), образующего "цепочки" мелких кристаллов, обладающих регрессивной зональностью. Во многих образцах гранитоидов

² Здесь и ниже приняты следующие символы: *Bt* – биотит, *Grs* – гроссуляр, *Grt* – гранат (с – центр, г – край кристалла), *Hbl* – роговая обманка, *Kfs* – калинатровый полевой шпат, *Pl* – плагиоклаз, *Prp* – пироп, *Qtz* – кварц, *Sps* – срессартин; $X_{Mg} = Mg/(Fe + Mg + Mn), X_{An} = Ca/(Ca + Na + K)$ мол. %.

Рис. 3. Схематическая геологическая карта северной части Кольского гранитоидного интрузива (верховья р. Левая Коль). *1* – черепановская свита – андезиты, андезитобазальты, туфы (палеоцен); *2* – хозгонская свита (нижняя часть кихчикской серии) – алевролиты, аргиллиты, полимиктовые песчаники, будины известковистого состава; *3* – алисторская свита – метапикриты, метапикробазальты, метатуфы; *4* – хейванская свита – филлиты, кристаллические сланцы, слюдистые метапесчаники; *5* – колпаковская серия – плагиогнейсы, мигматиты, будинированные тела амфиболитов, гранатовых амфиболитов и основных кристаллических сланцев; *6* – синметаморфические лейкократовые гранатслюдистые граниты и пегматиты; *7* – третичные граниты и гранодиориты лавкинского комплекса; *8* – метаморфизованные габброиды; *9* – гнейсовидные граниты Кольского интрузива; *10* – тектонические нарушения; *11* – роговики; *12* – элементы залегания слоистости, полосчатости и гнейсовидности; *13* – точки наблюдения.

Рис. 4. Схематическая геологическая карта Кольского интрузива водораздела рек Правая Коль и Сунтунк. *1* – хозгонская свита (нижняя часть кихчикской серии) – аргиллиты, алевролиты, песчаники, андалузитсодержащие роговики контактовых ореолов; *2* – алисторская свиты - пластовые тела метапикритов, метапикробазальтов и их туфов; *3* – колпаковская серия – мигматиты, мигматизированные плагиогнейсы, пластовые тела амфиболитов; *4* – гнейсовидные гранитоиды Кольского интрузива; *5* – точки наблюдения; *6* – элементы залегания слоистости, гнейсовидности, полосчатости.

наблюдается мусковит, формирующийся при процессах кислотного выщелачивания на постмагматической стадии гранитизации и мигматизации пород.

В гранодиорите (обр. 828, табл. 1) присутствуют два различных метаморфических граната: первый — в виде редких кристаллов с проградной зональностью и высоким содержанием гроссуляровой молекулы (30–35% Grs), ядра которого формировались на начальных этапах наложенного эоценового регионального метаморфизма ороговикованных вмещающих отложений и первично-магматических гранитоидов при давлении

около 3.0 кбар, и второй — в виде оторочек вокруг ядер этих крупных кристаллов, а также в виде мелких зерен граната с ретроградной зональностью и пониженной кальциевостью (около 10 % Grs) из прожилковидных выделений, образовавшихся на пике регионального метаморфизма, при возрас-

тании давления до 6–6.5 кбар³. Аналогичные "цепочковидные" выделения мелких кристаллов

³ Расчеты изменения давления регионального метаморфизма эоцена в Срединном хребте Камчатки произведены с использованием метода физико-химического моделирования на основе подхода выпуклого программирования "Селектор-С" (Авченко и др., 2009).

Рис. 5. Бластомилонит гнейсовидного гранитоида Кольского интрузива: (а) – обр. 46/27, (б) – обр. 46/28, левый борт р. Левая Коль (образец из коллекции С.М. Синицы).

низко кальциевого граната с ретроградной зональностью типичны и для вмещающих мигматизированных плагиогнейсов колпаковской серии.

Плагиоклаз в гранитоидах наблюдается в виде порфиробласт размером до 1.0-2.0 см и содержит обычно 20-26% *An*, но иногда встречаются и более основные разности (*XAn* = 0.34–0.36), характерные для гнейсовидных гранодиоритов и кварцевых диоритов. Акцессорные минералы гранитоидов — апатит, титанит, монацит, ортит, турмалин и циркон.

Амфиболсодержащие гнейсовидные гранодиориты и кварцевые диориты встречаются значительно реже среди крутогоровских гранитоидов. Они характеризуются ассоциацией магматического биотита ($X_{Mg} = 0.45$), буровато-зеленого амфибола ($X_{Mg} = 0.52$), плагиоклаза ($X_{An} = 0.45$ – 0.47) и кварца с наложенным метаморфическим гранатом ($X_{Mg} = 0.15$ –0.18, табл. 1, обр. 986/6), менее кальциевым плагиоклазом ($X_{An} = 0.30$ –0.35), менее железистым биотитом ($X_{Mg} = 0.50$) и иногда ортопироксеном ($X_{Mg} = 0.65$). Распределение железа и магния между гранатом и биотитом свидетельствует, что метаморфизм гранитоидов крутогоровского комплекса происходил при температуре 560–630°С (табл. 1).

Гнейсовидные гранитоиды кольского комплекса – светло-серые и серые среднезернистые породы как гнейсовидной, так и массивной текстуры, состоящие из биотита, кварца, плагиоклаза и иногда граната. Текстурный облик кольских гранитоидов изменяется сопряжено с изменением степени эоценового метаморфизма слоистого обрамления. В низкотемпературных зонах Срединного хребта гранитоиды характеризуются массивной текстурой и типичной гипидиоморфно-зернистой магматической структурой, а в высокотемпературных зонах — гнейсовой текстурой и кристаллобластовой или бластомилонитовой структурой, подчеркиваемой скоплениями и струйчатыми выделениями биотита (см. рис. 5). В бластокатаклазитах первичные выделения кварца гранулированы; нередко грануляцией затрагиваются и кристаллы плагиоклаза.

Плагиоклаз кольских гранитоидов образует таблитчатые кристаллы размером 1–5 мм, выделяющиеся на фоне мелко- или среднезернистой массы из кварца и биотита. Для неметаморфизованных разностей гранитов характерен андезин $X_{An} = 0.32-0.36$, иногда имеющий зональное строение (ядра андезин № 32–36, а внешние каймы – олигоклаз № 20–24). В метаморфизованных и мигматизированных разностях основность плагиоклаза снижается до № 23–30, составляя обычно 25–28% *Ап*.

Биотит ($X_{Mg} = 0.35 - 0.45$) в кольских гранитоидах — основной и в большинстве случаев единственный темноцветный минерал в виде кристаллов и их скоплений размером 0.5–2.0 мм, обусловливающих сланцеватую текстуру пород. В гнейсовидных разностях биотит формирует очковые, линзовидные и струйчатые агрегаты часто в ассоциации с мусковитом. В эндоконтактовых зонах или крупных апофизах во вмещающих ороговикованных породах в гранитоидах нередко появляется железистый метаморфический гранат

		944			111	2/4				986	5/6				828	
Ком- пненты	$Grt_{\rm c}$	$G \pi_{ m r}$	Bt	Grt _c	$G m_{ m r}$	Bt	Ρl	$Grt_{\rm c}^1$	$Grt_{ m r}^{ m l}$	$Grt_{\rm c}^2$	$Grt_{ m r}^2$	Bt	Plc	$Grt_{\rm c}^{\rm l}$	$Grt_{ m r}^{ m l}$	$Grt_{\rm c}^2$
	1	2	3	4	5	9	7	8	6	10	11	12	13	14	155	16
SiO_2	37.30	37.29	34.47	37.91	37.67	34.43	63.11	37.26	37.70	38.01	38.46	34.98	60.21	37.54	37.41	37.10
TIO_2	0.01	0.01	3.18	0.01	0.00	2.63	0.08	0.01	0.01	0.00	0.00	3.62	0.00	0.01	0.02	0.02
Al_2O_3	21.15	21.17	18.50	21.72	21.46	19.57	23.42	21.12	21.11	20.72	20.45	14.78	24.90	22.33	22.08	22.14
FeO	36.65	35.39	22.20	29.75	28.79	24.33	0.17	34.28	26.32	27.87	26.43	22.33	0.07	21.93	28.63	27.81
MnO	2.24	2.55	0.08	8.36	9.14	0.32	0.03	1.17	0.93	1.31	1.95	0.00	0.04	6.28	2.02	2.75
MgO	2.29	1.95	6.51	1.14	0.92	5.53	0.01	4.37	2.92	3.01	2.29	9.33	0.02	0.04	0.39	0.30
CaO	1.73	1.84	0.02	1.86	2.03	0.13	4.75	1.58	11.12	9.38	10.41	0.00	6.64	12.50	10.21	11.02
Na_2O	0.01	0.04	0.21	0.02	0.01	0.39	8.77	0.03	0.02	0.00	0.00	0.00	7.76	0.00	0.00	0.00
K_2O	0.00	0.01	8.93	0.00	0.01	8.88	0.45	0.00	0.00	0.00	0.00	10.90	0.26	0.00	0.00	0.00
Сумма	100.38	100.25	94.10	100.77	100.03	96.21	100.79	99.82	100.13	100.30	99.99	95.94	96.90	100.63	100.76	101.14
$X_{ m Mg}$	0.098	0.083	0.342	0.050	0.042	0.286	0.226*	0.180	0.161	0.155	0.126	0.427	0.318*	0.003	0.023	0.016
Alm	80.6	80.8	Ι	69.8	67.9	Ι	I	75.7	56.3	59.8	57.7	Ι	Ι	49.4	64.4	61.5
Prp	9.3	7.9	Ι	4.7	3.9	I	I	17.1	11.2	11.5	8.9	Ι	I	0.2	1.6	1.1
Sps	5.0	5.9	Ι	19.9	21.9	I	I	2.5	2.0	2.9	4.3	Ι	I	14.3	4.6	6.2
Grs	5.1	5.4	I	5.6	6.3	I		4.6	30.5	25.8	29.1	I	I	36.1	29.4	31.2
$T^{\rm C}$		°00°			56	00				64	0°				565°	

Таблица 1. Состав минералов гнейсовидных гранитоидов Крутогоровского интрузива

ПЕТРОЛОГИЯ том 22 № 6 2014

11

Окончание	
Ϊ.	
Таблица	

		87	x					1			170	<u>ل</u> -1
$Grt_{ m r}^2$	$Grt_{\rm c}^3$	$Grt_{ m r}^3$	Bt	Ы	Kfs	Grt _c	$Grt_{ m r}$	Bt	Ιd	Kfs	$Grt_{ m c}$	$Grt_{ m r}$
17	18	19	20	21	22	23	24	25	26	27	28	29
36.99	36.85	36.79	34.38	63.76	64.41	36.58	37.65	34.75	61.58	64.69	37.21	37.61
0.04	0.00	0.00	2.67	0.00	0.00	0.02	0.02	2.39	0.00	0.00	0.00	0.00
22.04	21.97	21.86	19.81	23.13	18.67	22.61	22.04	18.53	24.19	18.97	22.39	22.43
28.59	29.10	28.40	25.49	0.47	0.18	34.60	32.03	24.88	0.22	0.58	31.10	32.60
1.38	9.08	9.24	0.06	0.00	0.00	3.93	3.83	0.03	0.00	0.00	0.94	1.14
 0.56	0.55	0.44	4.62	0.00	0.00	2.14	1.82	5.85	0.00	0.00	1.40	2.32
9.82	3.41	3.34	0.00	4.28	0.01	0.97	2.49	0.00	5.62	0.00	7.34	4.27
 0.00	0.00	0.00	0.00	9.04	0.76	0.00	0.00	0.00	8.18	0.05	0.00	0.00
 0.00	0.00	0.00	9.88	0.33	16.71	0.00	0.00	9.77	0.34	17.15	0.00	0.00
99.42	100.96	100.07	96.91	101.01	100.74	100.85	99.88	96.20	100.13	101.44	100.38	100.37
 0.032	0.025	0.020	0.153	0.203*	Ι	0.090	0.083	0.295	0.266^{*}	I	0.058	0.109
 65.6	9.99	66.3	Ι	Ι	Ι	79.3	75.6	Ι	Ι	I	59.1	75.2
2.3	2.2	1.8	Ι	Ι	Ι	8.8	7.7	Ι	Ι	Ι	4.8	9.5
3.2	21.1	21.9	Ι	Ι	Ι	9.1	9.2	Ι	Ι	Ι	18.2	2.7
28.9	10.0	10.0	Ι	Ι	Ι	2.8	7.5	Ι	I	I	17.9	12.6
		26	2 °	_			_	630°	_			

кристаллическом сланце шихтинскои свиты, истоки р. Крутогорова; 828 – гнейсовидный гранодиорит (*Grt + Bt + Kfs + Pt + Qt*2); истоки р. Крутогорова; 944 – гнейсовидный гранодиорит (*Grt + Bt + Kfs + Pt + Qt*2), левобережье истоков р. Зологая; 986/6 – гнейсовидный гранодиорит (*Grt + Bt + Kfs + Pt + Qt*2), левобережье истоков р. Зологая; 986/6 – гнейсовидный кварцевый диорит (*Grt + Bt + Pt + Qt*2), левобережье истоков р. Зологая; 986/6 – гнейсовидный гранодиорит (*Grt + Bt + Kfs + Pt + Qt*2), левобережье истоков р. Зологая; 986/6 – гнейсовидный кварцевый диорит (*Grt + Ht + Qt*2), левобережье истоков р. Зологая; 986/6 – гнейсовидный кварцевый диорит (*Grt + Bt + Pt + Qt*2), истоки р. Хейван. Кристаллы граната: обр. 986/6: 8–9 – крупные, 10–11 – мелкие; обр. 828: 14–17 – центр и край крупных кристаллов, 18–19 – центр и край граната "цепочковидных" прожилков; обр. 803-51: 23, 24 – центр и край граната "цепочковидных" прожилков; обр. 820-Д – гранат со сложной зональностью: 28 – центр, 29 – край кристаллиз.

* $X_{\mathrm{Ca}} = \mathrm{Ca}/(\mathrm{Ca} + \mathrm{Na} + \mathrm{K}).$ Температура рассчитана по гранат-биотитовому геотермометру (Перчук и др., 1983). Оксиды даны в мас. %.

12

Nº 6 ПЕТРОЛОГИЯ том 22

²⁰¹⁴

 $(X_{Mg} = 0.007)$ в виде единичных изометричных зерен размером до 0.2–2.0 мм. Акцессорные минералы – циркон, апатит, титанит, титаномагнетит, графит, реже ортит, рутил.

РОГОВИКИ КОНТАКТОВЫХ ОРЕОЛОВ МЕЛОВЫХ ГРАНИТОИДОВ

Меловые роговики из контактовых ореолов массивов гранитоидов, испытавшие лишь рассланцевание и низкотемпературный метаморфизм при наложенных процессах регионального метаморфизма эоцена, характеризуются тонкозернистыми лепидогранобластовыми структурами и парагенезисами граната с биотитом, плагиоклазом и кварцем, к которым в метапелитовых разностях присоединяется андалузит в виде крупных (до 3-5 и более сантиметров) порфиробласт. Иногда в роговиках отмечается кордиерит (обычно нацело замещенный вторичными минералами) в ассоциации с гранатом, биотитом, плагиоклазом и кварцем. С удалением от контакта с гранитоидами андалузит-гранат-биотитовые роговики постепенно сменяются андалузитсодержащими узловатыми сланцами, филлитами и далее аспидными сланцами и метапесчаниками хлорит-серицитовой субфации.

На большей части Срединного хребта продукты мелового контактового метаморфизма были уничтожены более поздними метаморфическими процессами наложенного регионального метаморфизма эоцена, достигавшего уровня амфиболитовой фации кианит-силлиманитового типа (Тарарин, 2008), и сохранились только в участках его слабого проявления.

Наложенные процессы регионального метаморфизма обусловливают полное исчезновение из парагенезисов роговиков андалузита и хлорита, кристаллизацию ставролита (сначала в виде единичных мелких кристаллов, а затем появление более крупных его кристаллов, составляющих около 10-15% объема породы), формирование оторочек граната с прогрессивной зональностью вокруг ядер низкокальциевого и высокожелезистого роговикового граната, увеличение основности плагиоклаза и, наконец, на пике метаморфизма, появление в парагенезисах метапелитов кианита, который при гранитизации и мигматизации заключительных стадий регионального метаморфизма замещается силлиманитом (фибролитом) и андалузитом. Образующиеся породы – кристаллические сланцы и плагиогнейсы характеризуются среднезернистыми лепидогранобластовыми структурами и хорошо выраженной сланцеватостью и гнейсовидностью.

Примером, где выявляются реликтовые ассоциации роговиков, может служить северное замыкание Кольского интрузива в истоках р. Левая

ПЕТРОЛОГИЯ том 22 № 6 2014

Коль. Здесь (см. рис. 3, точки 196, 753) на контакте биотитовых гранодиоритов с вмещающими терригенными породами развиты андалузит-гранат-слюдистые роговики, образовавшиеся при температуре около 550°С и давлении около 2 кбар и испытавшие в течение наложенного регионального метаморфизма лишь слабое рассланцевание и регрессивный метаморфизм зеленосланцевой фации (Тарарин, 1981, 1988). Гранат роговиков отличается высокой железистостью ($X_{Mg} = 0.068 -$ 0.076) и низким содержанием гроссуляровой молекулы ($X_{Grs} = 1.8 - 4.7$ мол. %). Аналогичным составом характеризуются гранаты андалузитсодержащих роговиков водораздела рек Сунтунк и Правая Коль (рис. 4, точка 193), а также ядра кристаллов гранатов с оптической зональностью плагиогнейсов колпаковской серии водораздела рек Левая Коль и Средняя Воровская (см. рис. 3, точки 217, 218) (Тарарин, 1981; Тарарин, Авченко, 1983; Тарарин, Чубаров, 1979). В гранатах с оптической зональностью четко выделяется бедное кальцием ядро ($X_{Grs} = 2-6$ мол. %) и высококальциевая оторочка, где содержание гроссуляра возрастает иногда более чем в 4 раза. Ядра подобных зональных кристаллов граната по кальциевости и железистости аналогичны гранатам реликтовых роговиков. Эти особенности гранатов позволили на основе моделирования (Авченко, 1982) прийти к заключению, что формирование оторочек сложно зональных гранатов метаморфических пород происходило в условиях более высокого давления (глубинности) наложенного регионального метаморфизма по сравнению с контактовым ороговикованием (Тарарин, 1988, 2008). Широкое развитие кианита в высокоглиноземистых минеральных ассоциациях метаморфических пород массива подтверждает это заключение.

Отмеченные выше минералогические особенности плагиогнейсов свидетельствуют о том, что исходные терригенные отложения испытали на первом этапе (около 80 млн лет назад) только малоглубинный контактовый метаморфизм, отвечающий давлению андалузит-силлиманитовой фации глубинности, а не региональный метаморфизм амфиболитовой и даже гранулитовой фаций, как предполагалось ранее (Ханчук, 1985). Находки кордиерита в парагенезисе с гранатом, биотитом и андалузитом в контактовых роговиках вокруг гранитоидов Кольского массива свидетельствуют о малоглубинном типе контактового метаморфизма (Кориковский, 1979) в пределах Срединного хребта Камчатки. На втором этапе (в раннем эоцене) отложения хребта совместно с гранитоидами подверглись более глубинному кианит-силлиманитовому типу регионального метаморфизма амфиболитовой фации (Тарарин, 2008).

ГЕОХИМИЯ ГРАНИТОИДОВ

Гнейсовидные гранитоиды Срединного хребта по соотношению кремнезема и щелочей принадлежат к низкощелочным известково-щелочным породам и только единичные образцы относятся к

субщелочным образованиям (табл. 2, 3, рис. 6а)^{$^{-}$}. Для пород характерны значительные колебания содержания SiO₂ от кварцевых диоритов до лей-кократовых гранитов, но бо́льшинство гранитоидов отвечает составу гранитов и гранодиоритов.

На диаграмме SiO₂-K₂O (рис. 6б) основная часть гнейсовидных гранитоидов крутогоровского комплекса располагается в полях умеренно-калиевой и высококалиевой известково-щелочной серий и лишь единичные образцы относятся к низкокалиевой серии. Различия гранитоидов по содержанию К₂О позволили выделить среди них два геохимических типа. Гранитоиды I геохимического типа (табл. 2, обр. 797-Б, 799-Р, 803-Б, 805-В, 815, 828, 830-В) содержат повышенные концентрации оксида калия при пониженных содержаниях оксидов кальция, алюминия и натрия по сравнению с гранитами II геохимического типа (табл. 2, обр. 944, 946/3, 981/1, 984, 986/6, 989, 992, 998). Соотношения оксидов глинозема, щелочей и кальция обоих типов пород свидетельствуют об их принадлежности к высокоглиноземистым образованиям (рис. 7а). Содержания SiO₂ в породах I типа варьирует от 68 до 72 мас. %, тогда как концентрация оксида кремния в гранитах II типа изменяется от 61 до 71 мас. % (табл. 2). Гранитоиды I типа отличаются более высокими концентрациями Ba, Y, Zr, W, Pb, Th и U и отчетливо более низкими содержаниями Sr и Nb по сравнению с породами второго типа. Вариации содержаний петрогенных и рассеянных элементов гранитоидов I и II геохимических типов обусловлены различными количественными соотношениями плагиоклаза и калиевого полевого шпата: содержание калиевого полевого шпата в породах I геохимического типа в два раза больше, чем в гранитах II типа.

Петрохимические характеристики гнейсовидных гранитоидов кольского и крутогоровского комплексов отвечают S-гранитам (Chappel, White, 1992). На диаграмме CaO/Na₂O–Al₂O₃/TiO₂ (рис. 7б) гранитоиды формируют тренд, характерный для высокоглиноземистых гранитоидов, частично пересекающий поле высокоглиноземистых постколлизионных гранитов. Такое положение фигуративных точек на диаграмме, по нашему мнению, обусловлено существенной примесью вулканогенного материала в терригенных породах, за счет которых происходило формирование изученных гранитоидов.

Графики распределения рассеянных компонентов гнейсовидных гранитоидов кольского и крутогоровского комплексов (рис. 8а, 8б), нормированных к составу гранита океанических хребтов (Pearce et al., 1984), сходны с аналогичными графиками гранитоидов активных континентальных окраин и островных дуг. Изученные породы обогащены K, Rb, Ba, Th, Ce и Sm относительно Ta, Nb, Zr и Yb. От гранита океанических хребтов они отличаются пониженными содержаниями Y и Yb.

На диаграммах Rb–(Yb + Ta) и Rb–(Y + Nb) (рис. 9) практически все образцы крутогоровских и кольских гнейсовидных гранитоидов по соотношению этих элементов сходны с гранитами вулканических дуг (Pearce et al., 1984), располагаясь вне поля коллизионных гранитов.

Соотношения иттрия и стронция изученных гнейсовидных гранитоидов (рис. 10) сходны с содержаниями этих элементов в адакитах, хотя они резко отличаются от адакитов по другим геохимическим параметрам. В отличие от адакитов (Richards, Kerrik, 2007) гнейсовидные гранитоиды Срединного хребта характеризуются пониженными содержаниями Sr < 300 ppm. Отношение K₂O/Na₂O в них чаще больше 0.51, отношение (La/Yb)_N преимущественно меньше 10; они содержат пониженные концентрации Cr и Ni, а содержание иттрия в гнейсовидных гранитоидах значительно больше 18 при варьирующих концентрациях иттербия 1.8 < Yb > 1.8.

Диаграмма спектров REE (рис. 11а; табл. 2), нормированных по составу хондрита (McDonough, Sun, 1995), подтверждает выделение двух геохимических типов крутогоровских гнейсовидных гранитоидов, намеченное по петрогенным элементам. I геохимический тип характеризуется слабым фракционированным распределением спектров REE: $(La/Yb)_N = 2.03-6.47$; $(La/Sm)_N =$ = 2.15-2.84 и включает породы северной части Крутогоровского интрузива. В этих породах наблюдается устойчивый Еи-минимум, появление которого обусловлено выносом европия подкисленными флюидами на заключительных этапах гранитизации и мигматизации гранитоидов, согласно (Жариков, 1996). II геохимический тип отличается фракционированными спектрами распределения REE с обогащением LREE и обеднением HREE $(La/Yb)_N = 7.94-17.67; (La/Sm)_N =$ = 1.78-3.48 и отсутствием Еи-минимума. Эта группа представлена пластовыми телами гранитоидов, развитыми в бассейнах рек Квахона и Хейван (западная часть Крутогоровского интрузива) среди мигматизированных гранатсодержащих плагиогнейсов колпаковской серии.

Среди гнейсовидных гранитоидов кольского комплекса (рис. 116, табл. 3), нормированных по

⁴ Для геохимической характеристики меловых гнейсовидных гранитоидов были отобраны образцы, не затронутые процессами мигматизации и низкотемпературного изменения.

Рис. 6. Квалификационные диаграммы (Na₂O + K₂O)–SiO₂ (а) и K₂O–SiO₂ (б) для гнейсовидных гранитоидов крутогоровского (1) и кольского (2) комплексов. Использованы данные табл. 2 и 3 и неопубликованные данные авторов. Поля составов серий на диаграмме K₂O–SiO₂, по (Peccerilo, Taylor, 1976).

Рис. 7. Диаграммы Al/(Na + K)–Al/(Ca + Na + K) (a) и CaO/Na₂O–Al₂O₃/TiO₂ (б) для гнейсовидных гранитоидов крутогоровского (I) и кольского (2) комплексов. 3 – "метадресвянники" и кристаллические сланцы шихтинской свиты истоков р. Крутогорова (Тарарин и др., 2011). На диаграмме 76 поле высокоглиноземистых постколлизионных гранитов, по (Sylvester, 1998).

Таблица 2.	Содержа	иния петро	т) хтанных (т	мас. %), ра	иссеянных	и редкозе	MeJIBHBIX 3	элементов	(ppm) в г	нейсовиди	ных грани	гоидах кру	тогоровсн	COFO KOMII	лекса
Ком-	797-B	799-P	803-B	805-B	815	828	830-B	944	946/3	981/1	984	9/986	686	992	866
поненты	-	2	3	4	S	9	7	8	6	10	11	12	13	14	15
SiO_2	71.07	72.45	69.68	72.33	68.39	71.95	69.22	70.70c	61.80	59.60	71.20	61.80	65.47	66.70	67.40
TiO_2	0.43	0.33	0.53	0.35	0.52	0.33	09.0	0.74	1.13	0.70	0.24	1.13	0.50	0.44	0.42
Al_2O_3	14.38	14.08	14.54	14.16	15.42	14.05	14.85	14.12	16.51	17.02	15.35	16.51	16.86	17.19	16.11
$\mathrm{Fe_2O_3}^*$	3.76	3.21	4.24	2.96	4.22	3.40	4.31	5.30	7.47	5.55	2.20	7.46	3.08	3.09	2.89
MnO	90.0	0.05	0.08	0.05	0.06	0.06	0.06	0.07	0.12	0.09	0.03	0.12	0.03	0.05	0.03
MgO	0.94	0.63	0.98	09.0	0.89	0.49	1.08	0.95	2.20	4.93	0.71	2.20	1.44	1.30	1.11
CaO	1.57	1.23	2.04	1.69	2.31	1.69	2.58	2.78	4.19	5.83	2.52	4.19	3.63	3.63	3.27
Na_2O	3.46	3.41	3.34	3.58	3.71	3.68	3.55	3.42	3.52	3.57	4.45	3.52	4.41	4.73	4.73
K_2O	3.15	3.98	3.59	3.74	3.23	3.36	3.18	1.27	1.82	2.02	2.24	1.82	1.97	1.63	1.63
P_2O_5	0.19	0.21	0.15	0.16	0.20	0.13	0.20	0.02	0.31	0.14	0.07	0.31	0.20	0.14	0.15
П.п.п.	0.87	0.55	0.65	0.41	0.99	0.88	0.35	0.50	1.10	0.20	0.40	1.10	2.80	06.0	2.80
Сумма	98.88	100.14	99.83	100.02	99.95	100.00	96.98	99.88	100.19	99.66	99.41	100.19	100.40	99.95	100.52
Rb	98.68	134.5	109.5	122.0	100.6	103.0	102.0	76.00	69.65	107.5	111.4	69.65	142.3	142.3	137.0
Ba	772.5	723.0	752.5	499.5	605.5	740.5	723.5	270.9	234.2	271.7	713.9	234.2	363.9	386.3	177.2
Sr	189.9	105.4	174.6	107.6	147.3	142.9	178.5	219	239.2	362.7	432.3	239.2	356.4	332	338.1
Y	27.27	31.86	61.4	39.42	44.04	37.80	34.22	47.31	35.45	10.99	4.11	35.45	7.39	11.2	4.65
Zr	182.2	145.7	261.7	200.2	285.4	260.5	253.4	326.3	355.4	104	71.7	355.4	114.5	113.3	92.2
Nb	7.99	7.12	7.52	8.02	12.59	9.34	8.66	26.45	7.37	2.54	1.51	7.37	5.02	5.26	3.75
Cs	4.35	5.38	5.18	6.32	4.41	4.42	4.05	1.84	1.61	2.20	1.43	1.61	2.48	4.36	3.58
Ni	24	28	13	8	12	13	11	12	13	91.7	5	20	16	16	12.6
Co	11	7	10	4	8	9	6	8.59	7	21.45	9	19	10.32	10.02	7.54
Cr	30	22	30	19	26	21	32	38	36	92.6	32	60	35	34	59

-	Окончание
аблица 2.	аблица 2.

		1	2	3	4	5	6	7	8	6	10	11	12	13	14	15
	>	37.44	26.85	47.23	27.0	40.52	20.20	53.23	51.1	100.1	90.9	30	100.1	38.2	32.7	25.9
	La	29.26	18.72	28.06	20.27	29.63	31.37	28.72	19.59	10.95	2.65	5.54	10.95	12.73	15.68	4.33
	Ce	64.52	43.85	63.77	48.31	69.92	70.87	63.42	43.37	26.57	8.81	11.96	26.57	26.04	33.47	9.47
	Pr	7.67	5.49	7.88	5.83	8.40	8.46	7.72	4.99	3.19	1.37	1.26	3.19	3.06	3.43	1.21
	PN	31.61	22.00	33.27	25.31	35.29	36.37	32.65	16.52	13.86	6.53	4.70	13.86	11.57	12.37	4.80
	Sm	6.43	5.28	7.31	5.89	8.30	7.82	7.42	3.68	3.73	1.76	1.00	3.73	2.36	2.61	1.52
	Eu	0.952	0.690	0.966	0.849	1.01	1.14	1.15	0.86	0.91	0.65	0.32	0.91	0.74	0.69	0.75
	Gd	7.58	6.75	8.99	6.64	9.47	8.72	8.89	3.29	4.57	2.00	1.02	4.57	2.28	2.20	1.35
	Tb	0.968	0.992	1.42	1.11	1.37	1.23	1.26	0.71	0.78	0.28	0.13	0.78	0.26	0.27	0.18
	Dy	5.96	6.67	11.09	7.20	9.27	8.01	7.57	6.09	4.81	1.50	0.63	4.81	1.19	1.89	0.86
	Но	1.03	1.31	2.53	1.33	1.72	1.49	1.42	1.45	1.02	0.36	0.12	1.02	0.23	0.33	0.17
	Er	3.06	4.12	9.37	4.04	5.20	4.50	3.96	4.58	3.13	0.99	0.38	3.13	0.62	1.09	0.41
	Tm	0.443	0.598	1.32	0.571	0.743	0.705	0.544	0.68	0.05	0.13	0.05	0.43	0.08	0.14	0.05
	Yb	3.07	4.09	9.41	3.75	4.18	4.55	3.75	4.17	0.49	0.98	0.36	2.76	0.49	1.14	0.37
ПЕТ	Lu	0.462	0.659	1.369	0.58	0.659	0.67	0.498	0.50	0.06	0.11	0.04	0.37	0.08	0.14	0.05
РОЛ	Hf	6.34	5.22	8.55	7.42	9.69	9.81	8.38	6.82	1.71	1.73	1.50	5.64	3.14	3.46	2.78
оги	Та	0.661	0.760	0.572	0.763	0.863	0.654	0.662	1.92	0.20	0.11	0.15	0.52	0.26	0.54	0.17
Ят	M	1.71	1.60	0.941	0.868	1.05	1.38	0.509	0.89	0.14	0.02	0.22	0.25	0.29	0.18	0.23
ом 22	Po	21.94	25.29	30.25	33.21	28.22	26.27	19.38	8.61	10.24	5.20	8.43	5.60	12.33	13.79	12.55
2]	Th	14.04	10.31	13.77	11.81	15.09	15.69	13.62	5.24	3.07	0.31	1.91	1.95	3.70	5.49	0.66
№ 6	Ŋ	3.06	3.54	3.41	2.89	4.03	3.68	3.25	0.62	0.78	0.62	0.59	0.99	1.04	2.09	0.83
2014	Примечан *Все желез	ие. В табли зо в форме	цу включе Fe ₂ O ₃ .	ны гнейсо	видные гра	инитоиды,	не затрону	тые процес	ссами миг	матизации	и низкоте	мпературні	ыми вторич	чными изм	снениями	

18

Рис. 8. Гнейсовидные гранитоиды крутогоровского (а) и кольского (б) комплексов, нормированные к граниту океанических хребтов (ORG) (Pearce et al., 1984).

Рис. 9. Диаграммы Rb–(Yb + Ta) и Rb–(Y + Nb) (Pearce et al., 1984) для гнейсовидных гранитоидов крутогоровского (а) и кольского (б) комплексов.

Поля гранитов (Pearce et al., 1984): VAG – вулканических дуг, ORG – океанических хребтов, syn-COLG – синколлизионных, WGP – внутриплитных.

хондриту (McDonough, Sun, 1995), также различаются породы двух геохимических типов, как и в гранитах крутогоровского комплекса. Большинство проб кольских метагранитов отвечает гранитоидам первого геохимического типа $(La/Yb)_N = 3.98-10.93$; $(La/Sm)_N = 2.61-6.62$, а метаграниты второго типа представлены только двум образцами (табл. 3, обр. 278, 281), отобранными из массива верховьев р. Озерная Камчатка восточных склонов Срединного хребта.

Результаты исследований изотопного состава Sr, Nd и Pb в гнейсовидных гранитоидах крутогоровского и кольского комплексов Срединного хребта представлены в табл. 4 и 5. Изотопная Sr-Nd систематика пород обоих комплексов (рис. 12) показывает практически полное совпадение изотопных характеристик гранитоидов, что может служить подтверждением их генетической общности. Бо́льшая часть составов пород тяготеет к линии мантийной корреляции и имеет поло-

Таблица 3	. Codep:	жания по	строгенн	ных (мас.	%), pacc	сеянных	и редкоз	емельнь	нэмэце хі	ITOB (pp1	т) в гнеј	ісовидні	ых грани	тоидах к	ольског	экимиле	кса
Kom-	179	187-A	409	410	275	278	279-A	281	291	313-Д	315	320	1186	1192/2	1193/4	1196/1	1200
поненты	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17
SiO ₂	64.70	66.90	64.90	67.40	64.10	61.50	65.90	64.80	66.20	68.70	68.70	68.40	68.10	70.58	72.90	72.70	69.40
TiO_2	0.96	0.69	0.80	0.69	09.0	0.65	0.63	0.57	0.78	0.62	0.58	0.62	0.67	0.62	0.16	0.14	0.61
Al_2O_3	16.20	15.79	16.34	15.53	17.86	18.51	16.95	18.00	16.16	15.60	15.48	15.98	15.77	14.44	14.09	14.70	14.59
$\mathrm{Fe}_{2}\mathrm{O}_{3}^{*}$	6.19	5.00	5.60	4.89	5.57	5.30	4.89	4.34	5.08	4.42	4.52	4.48	4.52	4.51	1.86	1.41	4.38
MnO	0.07	0.07	0.07	0.07	0.07	0.08	0.05	0.06	0.06	0.06	0.06	0.05	0.05	0.06	0.02	0.02	0.06
MgO	1.95	1.46	1.75	1.47	1.02	2.68	1.19	1.62	1.43	1.01	0.99	1.04	1.47	1.34	0.36	0.20	1.40
CaO	2.87	2.90	3.47	2.88	3.43	5.60	3.02	4.78	2.89	2.17	1.97	2.17	1.18	1.18	1.22	1.13	2.46
Na_2O	3.23	3.73	3.77	3.63	4.22	3.74	3.92	4.05	3.60	3.30	3.36	3.34	2.89	2.66	3.65	3.61	3.52
K_2O	2.99	2.93	2.42	3.01	2.33	1.25	2.34	1.33	2.78	3.34	3.18	3.45	3.29	2.98	4.16	3.87	3.22
P_2O_5	0.29	0.17	0.20	0.16	0.31	0.13	0.16	0.15	0.19	0.22	0.20	0.21	0.10	0.08	0.13	0.15	0.20
П.п.п.	0.70	0.10	0.30	0.10	0.20	0.10	0.40	0.10	0.30	0.30	0.40	0.20	2.00	1.40	06.0	2.30	0.70
Сумма	100.14	99.74	99.63	99.84	99.71	99.54	99.45	99.81	99.47	99.73	99.44	99.94	100.03	99.83	99.45		100.53
Rb	124.6	104.1	93.4	98.25	120.6	103.4	76.25	97.00	99.55	142.1	107.1	115.8	126.6	147.8	158.2	178.9	133.3
Ba	537.4	341.9	392.8	307.5	450.8	156.2	361.2	157.1	442.1	660.4	393.9	438.4	585.9	579.9	504.9	407.8	561.9
Sr	216.38	174.9	235.1	181.0	239.6	500.3	233.4	524.1	209.7	178.4	200.3	184.1	233.5	213.5	164.7	143.7	309.7
Y	22.63	26.85	23.02	19.64	10.62	10.12	24.99	9.44	21.57	34.68	23.16	23.84	19.42	24.99	10.61	10.26	13.72
Zr	199.9	188.2	200.4	171.6	364.5	114.6	234.0	116.3	231.3	208.4	178	183.7	194.6	218	66.8	63.3	178.4
Nb	9.95	7.58	7.38	6.66	12.49	3.07	6.12	2.75	7.76	8.32	6.63	6.77	9.58	10.34	5.60	5.78	7.90
Cs	4.29	3.92	2.81	3.78	2.59	1.52	1.89	1.18	3.41	6.13	3.26	3.48	4.78	7.65	5.82	6.84	4.37
Ni	56.4	15	18.9	10	11	23	11	12	14	10	13	12	18	20	4	4	14.3
Co	15.04	11.37	12.25	10.46	10.25	12.69	7.27	8.13	10.58	10.34	9.24	8.96	9.76	11.65	2.92	2.47	8.86
Cr	85.5	64	77	83	37	58	40	47	73	49	59	48	79	80	28	18	63

ПЕТРОЛОГИЯ И ГЕОХИМИЯ МЕЛОВОГО ГРАНИТОИДНОГО МАГМАТИЗМА

ПЕТРОЛОГИЯ том 22 № 6 2014

21

Окончание	
Таблица 3.	

ТАРАРИН и др.

жительные или слабо отрицательные величины $\varepsilon_{Nd}(80) = +1.6-(-0.9)$, свидетельствуя о заметной роли базитового магматического материала в источнике гранитов. На это же указывает и низко радиогенный изотопный состав стронция – $(^{87}Sr/^{86}Sr)_{(80 \text{ млн лет})} = 0.7034-0.7059$ гранитоидов (табл. 4). Изотопный состав Nd в гнейсовидных гранитоидах крутогоровского и кольского комплексов свидетельствует о том, что состав исходного протолита содержал материал с изотопными характеристиками зрелой континентальной коры, сохраненными в метаосадочной составляющей протолита.

Вариации изотопного состава свинца в исследованных породах (табл. 5) отражены на диаграмме (рис. 13). На ней точки составов гнейсовидных гранитоидов обоих комплексов образуют компактное поле, в значительной мере совпадающее с полем составов толеитовых базальтов срединноокеанических хребтов, четвертичных вулканитов Камчатки и линией эволюции изотопного свинца деплетированной мантии. Очевидно, изотопный состав свинца гранитоидов определялся, прежде всего, мантийным источником вещества, благодаря вовлечению в процесс корового плавления основных вулканитов.

Наличие в пределах одних и тех же массивов крутогоровского и кольского комплексов различных геохимических типов гнейсовидных гранитов при близких их изотопных характеристиках, обусловлено, вероятно, различной степенью "продвинутости или завершенности" процессов магматического замещения (гранитизации) гетерогенных по составу исходных вулканогеннотерригенных отложений. В гранитоидах второго геохимического типа эти процессы проявлены более примитивно, что обусловливает сохранение в породах теневых структур, ксенолитов и блоков вмещающих пород.

Таким образом, геохимические данные свидетельствуют о том, что исходным протолитом гнейсовидных гранитоидов крутогоровского и кольского комплексов служили терригенные отложения мелового окраинного бассейна, подобные осадочным породам колпаковской, камчатской, малкинской и кихчикской серий, содержащих существенную долю основного вулканогенного материала, обусловливающего "мантийные метки" в изотопном составе гранитоидов. Sm-Nd изотопногеохимические исследования осадочных отложений этих серий отражают сходство изотопного состава неодима, средних значений изотопных отношений 147 Sm/ 144 Nd = 0.1148-0.1223, 143 Nd/ 144 Nd = = 0.512394-0.512470, ε_{Nd} = -2.8...-4.2 в породах, свидетельствуя об эпиконтинентальной природе и геохимическом единстве источников сноса, усредненный Sm-Nd модельный возраст которых оце-

ПЕТРОЛОГИЯ том 22 № 6 2014

Рис. 10. Диаграмма Sr/Y–Y (Drummond et al., 1996) для гнйсовидных гранитоидов крутогоровского (*1*) и кольского (*2*) комплексов.

нивается в 1.17 млрд лет (Кузьмин, Богомолов, 2013).

ГЕОДИНАМИЧЕСКАЯ ОБСТАНОВКА ГРАНИТООБРАЗОВАНИЯ

Вмещающими образованиями интрузивов гнейсовидных гранитоидов крутогоровского и кольского комплексов являются терригенные толщи кихчикской серии и ее метаморфизованные аналоги - колпаковская, камчатская и малкинская серии, возраст протолита которых - конец раннего мела-поздний мел (Соловьев, 2008; Hourigan et al., 2009). Формирование терригенных пород происходило у подножия континентального склона обширного эпиконтинентального окраинного бассейна на восточной окраине Азиатского континента. Источником терригенных отложений Камчатки служили мезозоиды Северо-Востока Азиатского континента (Гречин, 1979; Константиновская, 1997, 2003; Очерки ..., 1987; Шапиро и др., 2001, 2008).

Растяжение континентальной коры мелового осадочного бассейна и пересечение ее разломами, возникающими одновременно с формированием Охотско-Чукотского вулканогенного пояса (Акинин, Миллер, 2011), послужили началом проявления базитового и ультрабазитового вулканизма. Внедрение мантийного материала, сопровождаемого глубинными флюидами, в основание коры из вулканогенно-терригенных отложений окраинного бассейна, обеспечило значительное повышение температур в коре, магматическое замещение осадочных толщ, формирование магматических очагов и подъем гранитоидных пород в верхние горизонты коры. Метаосадочный харак-

Рис. 11. Нормированные по хондриту (McDonough, Sun, 1995) графики содержаний РЗЭ гнейсовидных гранитоидов крутогоровского (а) и кольского (б) комплексов. На диаграммах поля с серой заливкой – REE кристаллических сланцев шихтинской свиты истоков р. Крутогорова (Тарарин и др., 2011).

Рис. 12. Изотопная Sr-Nd систематика гнейсовидных гранитоидов: крутогоровского (1) и кольского (2) комплексов. Поля изотопного состава: 3 – метаморфических пород нижней толщи Хавывенской возвышенности (Тарарин и др., 2010); четвертичных базальтов Камчатки (Churikova et al., 2001), четвертичных базальтов дуги Хонсю (Kimura et al., 2002; Kimura, Yoshida, 2006) и базальтов N-MORB Тихого океана (White et al., 1987).

тер протолита меловых гранитоидов Срединного хребта подтверждается сходством спектров распределения РЗЭ и изотопов самария и неодима как в гранитоидах, так и вмещающих их плагиогнейсах и кристаллических сланцах (Костицын и др., 2012; Кузьмин, Богомолов, 2013).

Интенсивные деформации вулканогеннотерригенных отложений Срединного хребта, связанные с коллизионными процессами эоцена при обдукции коры западной части Тихого океана на восточную окраину Азиатского континента, обусловили тектоническое скучивание пород и резкое увеличение мощности коры, создав

ПЕТРОЛОГИЯ том 22 № 6 2014

благоприятные условия для ее быстрого прогрева, сопровождавшегося региональным метаморфизмом, достигавшим уровня амфиболитовой фации. Региональный метаморфизм эоцена обусловил не только метаморфические преобразования, мигматизацию и гранитизацию вулканогенно-терригенных отложений Срединного хребта, но и метаморфизм, мигматизацию и интенсивное разгнейсование магматических пород кольского и крутогоровского комплексов, превратив их в типичные метаграниты.

Интенсивные процессы гранитизации и мигматизации, сопровождавшие региональный ме-

комплексов
рутогоровского
кольского и к
к гранитоидах
гнейсовидных
Nd B I
ав Sr и
ий сост
Изотопнь
Таблица 4.

№ п/п	Образец	Rb, MKT/T	Sr, MKT/T	⁸⁷ Sr/ ⁸⁶ Sr (изм) ±20	(⁸⁷ Sr/ ⁸⁶ Sr) ₍₀₎ 80, млн лет	Sm, MKT/T	Nd, MKT/T	¹⁴⁷ Sm/ ¹⁴⁴ Nd	$^{143}Nd/^{144}Nd\pm 2\sigma$	$\varepsilon^{Nd}(0)$	ε _{Nd} (80), млн лет	T(DM)	T(DM-2)
1	179	124.6	216.4	0.706677 ± 22	0.704781	3.75	17.25	0.1308	0.512597 ± 8	-0.8	-0.1	1022	904
2	187-A	104.1	174.9	0.706197 ± 24	0.704238	4.47	20.03	0.1343	0.512611 ± 13	-0.5	0.1	1038	880
3	278	103.4	500.3	0.704118 ± 23	0.703438	1.59	7.64	0.1253	0.512659 ± 6	0.4	1.1	849	802
4	291	9.66	209.7	0.706467 ± 34	0.704904	5.02	23.18	0.1304	0.512603 ± 5	-0.7	0.0	1003	893
5	313-Д	142.1	178.4	0.707945 ± 21	0.705323	5.99	25.63	0.1407	0.512560 ± 6	-1.5	0.0-	1234	962
9	320	115.8	184.1	0.707773 ± 23	0.705702	4.20	19.08	0.1325	0.512636 ± 7	0.00	0.6	968	850
7	409	93.4	235.1	0.705740 ± 60	0.704324	3.52	16.05	0.1320	0.512644 ± 8	0.1	0.8	947	826
8	1193/4	158.2	164.7	0.706489 ± 23	0.703327	2.78	11.35	0.1474	0.512636 ± 7	0.00	0.5	1185	839
6	797-B	98.7	189.9	0.707596 ± 34	0.705885	6.43	31.60	0.1224	0.512567 ± 9	-1.4	-0.6	976	951
10	805-B	109.5	174.6	0.709284 ± 12	0.707219	7.31	33.30	0.1323	0.512678 ± 9	0.8	1.4	886	771
11	815	100.6	147.3	0.707818 ± 15	0.705570	8.30	35.30	0.1416	0.512647 ± 9	0.2	0.7	1066	821
12	828	103.0	142.9	0.707975 ± 22	0.705602	7.82	36.40	0.1294	0.512640 ± 8	0.0	0.7	925	833
13	830-B	102.0	178.5	0.707250 ± 13	0.705369	7.42	32.70	0.1368	0.512682 ± 8	0.9	1.5	931	764
14	944	76.0	219.0	0.706188 ± 37	0.705046	3.68	16.50	0.1441	0.512646 ± 7	0.2	0.8	968	823
15	986/6	69.7	239.2	0.705848 ± 18	0.704890	3.73	13.90	0.1620	0.512700 ± 8	1.2	1.6	1330	735

Примечание. Гранитоиды кольского (1–8) и крутогоровского (9–15) комплексов.

2014

ПЕТРОЛОГИЯ том 22 № 6

ТАРАРИН и др.

№ п/п	Образец	Рb, мкг/г	U, мкг/г	Th, мкг/г	206 Pb/ 204 Pb $\pm 2\sigma$	207 Pb/ 204 Pb $\pm 2\sigma$	208 Pb/ 204 Pb $\pm 2\sigma$
1	179	11.65	1.33	4.04	18.3387 ± 18	15.5622 ± 17	38.4274 ± 45
2	187-A	11.18	1.04	4.38	18.2144 ± 19	15.4401 ± 18	38.0552 ± 45
3	278	4.25	0.43	1.69	18.2422 ± 20	15.4948 ± 19	38.1774 ± 44
4	291	10.18	1.05	7.18	18.3016 ± 22	15.5006 ± 20	38.2445 ± 51
5	313-Д	13.53	2.74	8.64	18.312 ± 18	15.5146 ± 18	38.2880 ± 48
6	320	13.58	2.82	6.25	18.2709 ± 20	15.4712 ± 19	38.1408 ± 45
7	409	8.31	1.04	4.38	18.2074 ± 21	15.471520	38.1082 ± 50
8	1193/4	20.88	2.62	6.60	18.312 ± 20	15.5059 ± 19	38.2265 ± 49
9	797-Б	21.94	3.06	14.04	18.3317 ± 26	15.4985 ± 22	38.2776 ± 60
10	805-B	30.25	2.89	11.81	18.3197 ± 18	15.505617	38.2403 ± 43
11	815	28.22	4.03	15.09	18.3437 ± 20	15.5108 ± 19	38.2719 ± 48
12	828	26.27	3.68	15.69	18.3143 ± 20	15.5100 ± 19	38.2789 ± 46
13	830-B	19.38	3.25	13.62	18.3238 ± 16	15.5113 ± 13	38.2318 ± 55
14	944	8.61	0.62	5.24	18.1853 ± 28	15.5018 ± 22	38.1477 ± 62
15	986/6	5.6	0.99	1.95	18.2734 ± 24	15.5102 ± 24	38.1858 ± 49

Таблица 5. Изотопный состав свинца в гнейсовидных гранитоидах кольского и крутогоровского комплексов

Примечание. Гранитоиды кольского (1-8) и крутогоровского (9-15) комплексов.

таморфизм отложений, обусловили формирование гранитогнейсовых куполов, что привело к резкому изменению глубинности метаморфических образований (снижение давления с 6–7 кбар до 2–3 кбар) (Тарарин, 2008), интенсивную эрозию центральных частей гранитогнейсовых купо-

Рис. 13. Зависимость изотопных отношений 207 Pb/ 204 Pb- 206 Pb/ 204 Pb для гнейсовидных гранитоидов крутогоровского (*1*) и кольского (*2*) комплексов.

ВК – линия эволюции изотопного состава Pb в верхней континентальной коре, ОРГ – линия эволюции изотопного состава Pb в орогенном поясе, М – то же, в истощенной мантии.

лов и выведение на поверхность глубокометаморфизованных отложений колпаковской и камчатской серий, к западу и востоку от которых слабее просматриваются метаморфизованные отложения малкинской и кихчикской серий. Минералогическим свидетельством резкого изменения глубинности процессов гранитизации служат реакционные структуры замещения кианита андалузитом как в метаморфических породах, так и в жильных синметаморфических гранитах и пегматитах. Процессы роста и воздымания гранитогнейсовых куполов обусловили "срыв или сползание" менее метаморфизованных отложений на их флангах и повсеместно наблюдаемые тектонические взаимоотношения между глубоко и слабо метаморфизованными образованиями.

ЗАКЛЮЧЕНИЕ

Гранитоидному магматизму в раннем мелу на Камчатке предшествовало заложение на востоке Азиатского континента крупного окраинного осадочного бассейна протяженностью около 500 км, в котором формировались терригенные отложения укэлаятской, омгонской, лесновской и кихчикской серий Камчатки и Корякского нагорья мощностью более 5 км.

В конце раннего мела осадочные отложения бассейна были интрудированы многочисленными пластовыми телами и силлами пикритов, пикробазальтов и базальтов, время внедрения которых синхронно с началом формирования на Азиатской континентальной окраине Охотско-Чукотского вулканогенного пояса, связанного с подъемом вещества верхней мантии к нижней границе континентальной коры. Дальнейшее развитие магматизма привело к вовлечению в магматический процесс корового субстрата окраинного бассейна с проявлением в пределах Центральной и Западной Камчатки вулканизма среднего и кислого составов и малоглубинного гранимагматизма тоидного (крутогоровский И кольский интрузивные комплексы).

Таким образом, процессы магматизма Центральной Камчатки включают ранний инициальный магматизм, обусловленный подъемом мантийного субстрата, с которым связано формирование пластовых тел и силлов основных и ультраосновных пород в осадочных отложениях окраинного бассейна, и последующий за ним коровый магматизм в виде кислого вулканизма и малоглубинного гранитоидного магматизма, инициированного подъемом мантийного вещества.

На границе позднего мела и палеогена произошла коренная тектоническая перестройка в зоне взаимодействия континентальной и океанической плит, сопровождавшаяся обдукцией коры западной окраины Тихого океана на восточную

часть Азиатского континента. В результате суммарная мощность коры в зоне надвига существенно увеличилась и вулканогенно-терригенные отложения осадочного бассейна, интрудированные гранитами и основными породами, оказались опущенными на глубины порядка 15-20 км, испытав зональный региональный метаморфизм с максимальными параметрами (давление 6–7 кбар, температура 650°С). Прогрев и перекристаллизация пород привели к разуплотнению коры, частичному ее анатектическому плавлению (эоценовый этап гранитоидного магматизма Центральной Камчатки с возрастом 52 млн лет) и поднятию в виде гранитогнейсовых куполов, завершив процесс формирования гранитогнейсового субстрата в области термального действия мантийного вещества.

Региональный метаморфизм эоцена обусловил не только метаморфические преобразования, мигматизацию и гранитизацию вулканогеннотерригенных отложений Срединного хребта, испытавших на первом этапе только контактовое ороговикование при внедрении меловых гранитоидов, но и метаморфизм, мигматизацию и интенсивное разгнейсование магматических пород кольского и крутогоровского комплексов, превратив их в типичные метаграниты.

Таким образом, геологические, минералогические и изотопно-геохимические данные свидетельствуют о своеобразном типе гранитоидов окраинных осадочных бассейнов. Они формируются при процессах магматического замещения (гранитизации) терригенных отложений, содержащих значительное количество базитовых материала и обусловливающих "мантийные метки" в составе гранитоидных пород. Геохимически изученные гранитоиды сходны с коллизионными и аккреционными гранитоидами, но являются самостоятельным типом пород, типичных для окраинных бассейнов типа Японского и Охотского морей.

Благодарности. Авторы выражают свою искреннюю признательность чл.-корр. С.П. Кориковскому (ИГЕМ РАН) за ценные рекомендации, способствующие значительному улучшению статьи в процессе ее подготовки к печати.

СПИСОК ЛИТЕРАТУРЫ

Авченко О.В. Петрогенетическая информативность гранатов метаморфических пород. М.: Наука, 1982. 103 с.

Авченко О.В., Чудненко К.В., Александров И.А. Основы физико-химического моделирования минеральных систем. М.: Наука, 2009. 229 с.

Акинин В.В., Андроников А.В., Мукаса С.Б., Миллер Э.Л. Меловая нижняя кора континентальных окраин севера Пацифики: петролого-геохронологические данные

по нижне-среднекоровым ксенолитам // Петрология. 2013. Т. 21. № 1. С. 34–73.

Акинин В.В., Миллер Э.Л. Эволюция известково-щелочных магм Охотско-Чукотского вулканогенного пояса // Петрология. 2011. Т. 19. № 3. С. 249–290.

Богданов Н.А., Добрецов Н.Л. Охотское океаническое вулканическое плато // Геология и геофизика. 2002. № 2. С. 101–114.

Бондаренко Г.Е. Юрско-валанжинский этап в эволюции Камчатки. Автореф. дис. ... канд. геол.-мин. наук. М.: ГИН РАН, 1992. 24 с.

Виноградов В.И., Григорьев В.С. Rb-Sr-возраст пород Срединного выступа Камчатки // Докл. АН. 1994. Т. 339. № 5. С. 645–649.

Геология СССР. Т. ХХХІ. Камчатка, Курильские и Командорские острова. Ч. І. Геологическое описание. М.: Недра, 1964. 729 с.

Государственная геологическая карта Российской Федерации. Масштаб 1 : 1000000 (третье поколение). Серия Корякско-Курильская. Лист N-57 — Петропавловск-Камчатский. Объяснительная записка. СПб.: изд-во СПб картографич. фабрики ВСЕГЕИ, 2006. 376 с.

Гречин В.И. Верхнемеловые вулканогенно-осадочные формации различных структурно-фациальных зон Камчатки // Осадконакопление и вулканизм в геосин-клинальных бассейнах. М.: Наука, 1979. С. 130–149.

Жариков В.А. Некоторые аспекты проблемы гранитообразования // Вестн. Моск. Ун-та. Сер. 4. Геология. 1996. № 4. С. 3–12.

Карта полезных ископаемых Камчатской области. Масштаб 1 : 500000. Ред. А.Ф. Литвинов, М.Г. Патока, Б.А. Марковский. СПб.: ВСЕГЕИ, 1999.

Кирмасов А.Б., Соловьев А.В., Хоуриган Дж.К. Коллизионная и постколллизионная структурная эволюция Андриановского шва (Срединный хребет, Камчатка) // Геотектоника. 2004. № 4. С. 64–90.

Колосков А.В. Петролого-геохимические особенности мелового и кайнозойского интрузивного магматизма Камчатки, источники расплавов, геодинамические условия проявления // Тихоокеанская геология. 2011. Т. 30. № 2. С. 27–45.

Константиновская Е.А. Камчатское позднемеловое окраинное море // Литология и полезные ископаемые. 1997. № 1. С. 58–73.

Константиновская Е.А. Тектоника восточных окраин Азии: структурное развитие и геодинамическое моделирование. М.: Научный мир, 2003. 224 с.

Кориковский С.П. Фации метаморфизма метапелитов. М.: Наука, 1979. 263 с.

Костицын Ю.А., Аносова М.О., Ревяко Н.М., Степанов В.А. U-Pb и Sm-Nd данные о возрасте фундамента Срединного хребта Камчатки // Геохронометрические и изотопные системы, методы их изучения, хронология геологических процессов. Материалы V Российской конф. по изотопной геохронологии, 4–6 июня 2012 г., Москва. М.: ИГЕМ РАН, 2012. С. 175–177.

Крук Н.Н., Хромых С.В., Куйбида М.Л. Гранитоидный магматизм турбидитовых палеобассейнов: состав, источники, механизмы формирования // Граниты и эволюция Земли: геодинамическая позиция, петрогенезис и рудоносность гранитоидных батолитов. Матери-

алы I Международн. геолог. конф. 26–29 августа 2008 г., Улан-Удэ. Улан-Удэ: изд-во Бурятского научного центра СО РАН, 2008. С. 207–208.

Кузьмин В.К., Богомолов Е.С. Источники метатерригенных толщ Срединно-Камчатского и Ганальского поднятий в свете новых Sm-Nd изотопных данных // Геотектоника. 2013. № 3. С. 87–96.

Леликов Е.П., Маляренко А.Н. Гранитоидный магматизм окраинных морей Тихого океана. Владивосток: Дальнаука, 1994. 226 с.

Лучицкая М.В. Гранитоидный магматизм и становление континентальной коры северного обрамления Тихого океана в мезозое—кайнозое. Автореф. дис. ... доктора геол.-мин. наук. М.: ГИН РАН, 2012. 49 с.

Лучицкая М.В., Соловьев А.В. Кампанский этап гранитообразования на юге Срединного хребта Камчатки: новые U-Pb-SHRIMP-данные // ДАН. 2010. Т. 430. № 3. С. 352–358.

Лучицкая М.В., Соловьев А.В. Раннеэоценовый магматизм Срединного хребта Камчатки: состав и геодинамические аспекты // Петрология. 2012. Т. 20. № 2. С. 166–207.

Лучицкая М.В., Соловьев А.В., Хоуриган Дж.К. Два этапа формирования гранитоидов Срединного хребта Камчатки: их тектоническая и геодинамическая позиция // Геотектоника. 2008. № 4. С. 49–69.

Некрасов Г.Е. Тектоническая природа Корякско-Камчатского региона и вопросы геодинамики складчатого обрамления Севера Тихого океана // Геотектоника. 2003. № 6. С. 53–70.

Очерки тектонического развития Камчатки / Под ред. В.В. Белоусова. М.: Наука, 1987. 248 с.

Перчук Л.Л., Лаврентьева И.В., Аранович Л.Я., Подлесский К.К. Биотит-гранат-кордиеритовые равновесия и эволюция метаморфизма. М.: Наука, 1983. 197 с.

Рихтер А.В. Структура метаморфического комплекса Срединно-Камчатского массива // Геотектоника. 1995. № 1. С. 71–78.

Селянгин О.Б. О тектонической позиции никеленосных интрузивов Срединнокамчатского массива // Вестник КРАУНЦ. Науки о земле. 2009. № 1. Вып. 13. С. 123–138.

Синица С.М., Шашкин К.С. Плагиограниты Срединного хребта, их возраст, фациальные черты и место в структурной эволюции камчатских метаморфид // Корреляция эндогенных процессов Тихоокеанского пояса. Владивосток: ДВГИ ДВНЦ АН СССР, 1979. С. 102–110.

Соловьев А.В. Изучение тектонических процессов в областях конвергенции литосферных плит: методы трекового датирования и структурного анализа. М.: Наука, 2008. 319 с. (Тр. ГИН РАН, Вып. 577).

Тарарин И.А. Особенности минералогии и зональность гранатов как показатели полиметаморфизма Срединно-Камчатского комплекса // Геология и геофизика. 1981. № 6. С. 45–56.

Тарарин И.А. Эволюция метаморфизма в Срединно-Камчатской метаморфической зоне // Тихоокеанская геология. 1988. № 1. С. 63–70.

Тарарин И.А. Гранулиты колпаковской серии Срединного хребта Камчатки – миф или реальность? // Петрология. 2008. Т. 16. № 2. С. 207–224.

Тарарин И.А., Авченко О.В. О сложной зональности гранатов (на примере метаморфических пород Срединного хребта Камчатки) // Изв. АН СССР. Серия геологическая. 1983. № 4. С. 81–90.

Тарарин И.А., Дриль С.И., Сандимирова Г.П. и др. Изотопный состав стронция, неодима и свинца в метаморфических породах Хавывенской возвышенности Восточной Камчатки // ДАН. 2010. Т. 431. № 2. С. 238– 241.

Тарарин И.А., Бадрединов З.Г., Чубаров В.М., Шарова О.И. Гротит гранат-слюдистых кристалличексих сланцев шихтинской свиты Срединнокамчатского массива // ДАН. 2011. Т. 438. № 6. С. 809–812.

Тарарин И.А., Чубаров В.М. Зональность гранатов и полиметаморфизм отложений Срединного хребта Камчатки // Докл. АН СССР. 1979. Т. 249. № 6. С. 1437– 1441.

Тарарин И.А., Чубаров В.М. Сульфидная медно-никелевая минерализация в метавулканитах андриановской свиты Срединно-Камчатского массива // Тихоокеанская геология. 2004. Т. 23. № 6. С. 76–83.

Филатова Н.И. Магматические источники окраинных морей: сравнение магматизма Японского моря и других бассейнов запада Тихого океана // ДАН. 2003. Т. 389. № 1. С. 88–94.

Филатова Н.И. Специфика магматизма окраинноконтинентальных и окраинно-морских бассейнов синсдвиговой природы, западная периферия Тихого океана // Петрология. 2008. Т. 16. № 5. С. 480–500.

Ханчук А.И. Эволюция древней сиалической коры в островодужных системах Восточной Азии. Владивосток: ДВНЦ АН СССР, 1985. 138 с.

Шапиро М.Н., Соловьев А.В., Гарвер Дж.И., Брэндон М.Т. Источники цирконов в терригенных толщах мела и нижнего палеогена юга Корякии и Западной Камчатки // Литология и полезные ископаемые. 2001. № 4. С. 374–389.

Шапиро М.Н., Соловьев А.В., Хоуриган Дж.К. Латеральная изменчивость тектонических структур в зоне эоценовой коллизии островной дуги с континентом (Камчатка) // Геотектоника. 2008. № 6. С. 70–91.

Шульдинер В.И., Высоцкий С.В., Ханчук А.И. Фундамент тихоокеанских активных окраин. М.: Наука, 1987. 208 с.

Bindeman I.N., Vinogradov V.I., Valley J.W. et al. Archean protolith and accretion of crust in Kamchatka: SHRIMP

dating of zircons from Sredinny and Ganal Massifs // J. Geol. 2002. V. 110. N $_{\circ}$ 3. P. 271–289.

Chappell B.W., White A.J.R. I-and S-type granites in the Lochlan field belt // Trans. Royal Soc. Edinburgh. Earth Sciences. 1992. V. 83. P. 1–26.

Churikova T., Dorendorf F., Wonner G. Sources and fluids in the mantle wedge below Kamchatka, evidence from across arc geochemical variation // J. Petrol. 2001. V. 42. № 8. P. 1567–1593.

Drummond M.S., Defant M.J., Kepezhinskas P.K. Petrogenesis of slab-derived tronhdjemite-tonalite-dacite/adakite magmas // Trans. Roy. Soc. Edinburgh. Earth Sciences. 1996. V. 87. P. 205–215.

Hourigan J.K., Brandon M.T., Soloviev A.V. et al. Eocene arc-continent collision and crustal consolidation in Kam-chatka, Russian Far East // Amer. J. Sci. 2009. V. 309. № 5. P. 333–396.

Kimura J.-I., Manton W.I., Sun C.-H. et al. Chemical diversity of the Ueno basalts, Central Japan: identification of mantle and crustal contributions to arc basalts // J. Petrol. 2002. V. 4. № 10. P. 1923–1946.

Kimura J.-I., Yoshida T. Contribution of slab fluid, mantle wedge and crust to the origin of Quaternary lavas in the NE Japan arc // J. Petrol. 2006. V. 47. № 11. P. 2185–2232.

McDonough W.F., Sun S.-S. The composition of the Earth // Chemical Geol. 1995. V. 120. № 3–4. P. 223–253.

Pearce J.A., Harris N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // J. Petrol. 1984. V. 25. № 4. P. 956–983.

Peccerillo A., Taylor S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey // Contrib. Mineral. Petrol. 1976. V. 58. № 1. P. 63–81.

Richards J.P., Kerrik R. Adakite-like rocks: Their diverse origins and questionable role in metallogenesis // Econ. Geol. 2007. V. 102. № 4. P. 537–576.

Sylvester P.J. Post-collisional strongly peraluminous granites // Lithos. 1998. V. 45. № 1–4. P. 29–44.

Watson E.B., Harrison T.M. Zircon saturation revisited: temperature and composition effects in the variety of crustal magma types // Earth Planet Sci. Lett. 1983. V. 64. No 2. P. 295–304.

White M.W., Hofmann A.W., Puchett H. Isotope geochemistry of Pacific Mid-Ocean ridge basalts // J. Geophys. Res. 1987. V. 92. № B6. P. 4881–4893.